隐私抽象层中的人脸识别

Di Zhuang, Sen Wang, J. M. Chang
{"title":"隐私抽象层中的人脸识别","authors":"Di Zhuang, Sen Wang, J. M. Chang","doi":"10.1109/DESEC.2017.8073826","DOIUrl":null,"url":null,"abstract":"Data-driven mobile applications are becoming increasingly popular in civilian and law enforcement. RapidGather, for instance, is an smartphone application that collects data from individual, and spreads rapid emergency responses. Image data is widely used in such applications, and machine learning methods could be utilized to analyze the image data. However, people would hesitate to share the data without protecting their privacy. In this paper, we propose to utilize dimensionality reduction techniques for privacy-preserving machine learning in face recognition for the image data. To demonstrate the proposed approach, we implement a client server system, FRiPAL. With extensive experiments, we show that FRiPAL is efficient, and could preserve the privacy of data owners while maintaining the utility for data users.","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"50 1","pages":"441-448"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"FRiPAL: Face recognition in privacy abstraction layer\",\"authors\":\"Di Zhuang, Sen Wang, J. M. Chang\",\"doi\":\"10.1109/DESEC.2017.8073826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven mobile applications are becoming increasingly popular in civilian and law enforcement. RapidGather, for instance, is an smartphone application that collects data from individual, and spreads rapid emergency responses. Image data is widely used in such applications, and machine learning methods could be utilized to analyze the image data. However, people would hesitate to share the data without protecting their privacy. In this paper, we propose to utilize dimensionality reduction techniques for privacy-preserving machine learning in face recognition for the image data. To demonstrate the proposed approach, we implement a client server system, FRiPAL. With extensive experiments, we show that FRiPAL is efficient, and could preserve the privacy of data owners while maintaining the utility for data users.\",\"PeriodicalId\":92346,\"journal\":{\"name\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"volume\":\"50 1\",\"pages\":\"441-448\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DESEC.2017.8073826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESEC.2017.8073826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

数据驱动的移动应用程序在民用和执法领域越来越受欢迎。例如,RapidGather是一款智能手机应用程序,可以收集个人数据,并传播快速应急响应。在这些应用中,图像数据被广泛使用,机器学习方法可以用来分析图像数据。然而,如果不保护自己的隐私,人们会犹豫是否要分享这些数据。在本文中,我们提出利用降维技术在图像数据的人脸识别中保护隐私的机器学习。为了演示所提出的方法,我们实现了一个客户端服务器系统,FRiPAL。通过大量的实验,我们证明了FRiPAL是有效的,并且可以在保持数据用户效用的同时保护数据所有者的隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FRiPAL: Face recognition in privacy abstraction layer
Data-driven mobile applications are becoming increasingly popular in civilian and law enforcement. RapidGather, for instance, is an smartphone application that collects data from individual, and spreads rapid emergency responses. Image data is widely used in such applications, and machine learning methods could be utilized to analyze the image data. However, people would hesitate to share the data without protecting their privacy. In this paper, we propose to utilize dimensionality reduction techniques for privacy-preserving machine learning in face recognition for the image data. To demonstrate the proposed approach, we implement a client server system, FRiPAL. With extensive experiments, we show that FRiPAL is efficient, and could preserve the privacy of data owners while maintaining the utility for data users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信