非线性非齐次Robin问题的正解

Pub Date : 2015-10-29 DOI:10.4171/ZAA/1548
L. Gasiński, D. O’Regan, Nikolaos S. Papageorgiou
{"title":"非线性非齐次Robin问题的正解","authors":"L. Gasiński, D. O’Regan, Nikolaos S. Papageorgiou","doi":"10.4171/ZAA/1548","DOIUrl":null,"url":null,"abstract":"We consider a nonlinear, nonhomogeneous Robin problem with a Carathéodory reaction which satisfies certain general growth conditions near 0+ and near +∞. We show the existence and regularity of positive solutions, the existence of a smallest positive solution and under an additional condition on the reaction, we show the uniqueness of the positive solutions. We then show that our setting incorporates certain parametric Robin equations of interest such as nonlinear equidiffusive logistic equations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Positive Solutions for Nonlinear Nonhomogeneous Robin Problems\",\"authors\":\"L. Gasiński, D. O’Regan, Nikolaos S. Papageorgiou\",\"doi\":\"10.4171/ZAA/1548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a nonlinear, nonhomogeneous Robin problem with a Carathéodory reaction which satisfies certain general growth conditions near 0+ and near +∞. We show the existence and regularity of positive solutions, the existence of a smallest positive solution and under an additional condition on the reaction, we show the uniqueness of the positive solutions. We then show that our setting incorporates certain parametric Robin equations of interest such as nonlinear equidiffusive logistic equations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

考虑一类非线性非齐次Robin问题,该问题具有carathacimodory反应,满足在0+和+∞附近的某些一般增长条件。我们证明了正解的存在性和规律性,证明了最小正解的存在性,并在反应的附加条件下,证明了正解的唯一性。然后,我们证明了我们的设置包含某些感兴趣的参数罗宾方程,如非线性等扩散逻辑方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Positive Solutions for Nonlinear Nonhomogeneous Robin Problems
We consider a nonlinear, nonhomogeneous Robin problem with a Carathéodory reaction which satisfies certain general growth conditions near 0+ and near +∞. We show the existence and regularity of positive solutions, the existence of a smallest positive solution and under an additional condition on the reaction, we show the uniqueness of the positive solutions. We then show that our setting incorporates certain parametric Robin equations of interest such as nonlinear equidiffusive logistic equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信