{"title":"基于分形理论的水润滑轴承混合润滑摩擦模型","authors":"Chuang Wu, Yinbo Wang, F. Chen, X. Long","doi":"10.1177/13506501231190679","DOIUrl":null,"url":null,"abstract":"To the water lubricated bearing, its mixed-lubricated friction model is generally established based on the traditional statistical model, whose accuracy is not high due to the inaccurate characterization of surface topography. Therefore, this paper employs the fractal theory that has scale-independent characteristics and high precision to characterize the surface topography of the bearing and journal, and then establishes the fractal contact model of asperity, combining the average Reynolds equation of the film, proposes a mixed-lubricated friction model based on fractal theory. The scanning experiments of surface topography are carried out to obtain the fractal parameters and measurements of the friction coefficient are performed to verify the effectiveness of the proposed mixed-lubricated model. Subsequently, the proposed mixed-lubricated friction model is employed to analyze the effects of the number of groove, the position of groove and the fractal parameters on the lubrication and friction characteristics of the water lubricated bearing. Results indicate when the grooves are in the non-main load-carrying regions, the friction characteristics of the bearing slightly changes, and the lower surface roughness is beneficial to improve the lubrication and friction properties of the bearing.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"1 1","pages":"1913 - 1929"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mixed-lubricated friction model of water lubricated bearing based on fractal theory\",\"authors\":\"Chuang Wu, Yinbo Wang, F. Chen, X. Long\",\"doi\":\"10.1177/13506501231190679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To the water lubricated bearing, its mixed-lubricated friction model is generally established based on the traditional statistical model, whose accuracy is not high due to the inaccurate characterization of surface topography. Therefore, this paper employs the fractal theory that has scale-independent characteristics and high precision to characterize the surface topography of the bearing and journal, and then establishes the fractal contact model of asperity, combining the average Reynolds equation of the film, proposes a mixed-lubricated friction model based on fractal theory. The scanning experiments of surface topography are carried out to obtain the fractal parameters and measurements of the friction coefficient are performed to verify the effectiveness of the proposed mixed-lubricated model. Subsequently, the proposed mixed-lubricated friction model is employed to analyze the effects of the number of groove, the position of groove and the fractal parameters on the lubrication and friction characteristics of the water lubricated bearing. Results indicate when the grooves are in the non-main load-carrying regions, the friction characteristics of the bearing slightly changes, and the lower surface roughness is beneficial to improve the lubrication and friction properties of the bearing.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"1 1\",\"pages\":\"1913 - 1929\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231190679\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231190679","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A mixed-lubricated friction model of water lubricated bearing based on fractal theory
To the water lubricated bearing, its mixed-lubricated friction model is generally established based on the traditional statistical model, whose accuracy is not high due to the inaccurate characterization of surface topography. Therefore, this paper employs the fractal theory that has scale-independent characteristics and high precision to characterize the surface topography of the bearing and journal, and then establishes the fractal contact model of asperity, combining the average Reynolds equation of the film, proposes a mixed-lubricated friction model based on fractal theory. The scanning experiments of surface topography are carried out to obtain the fractal parameters and measurements of the friction coefficient are performed to verify the effectiveness of the proposed mixed-lubricated model. Subsequently, the proposed mixed-lubricated friction model is employed to analyze the effects of the number of groove, the position of groove and the fractal parameters on the lubrication and friction characteristics of the water lubricated bearing. Results indicate when the grooves are in the non-main load-carrying regions, the friction characteristics of the bearing slightly changes, and the lower surface roughness is beneficial to improve the lubrication and friction properties of the bearing.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).