无约束优化和投资组合选择问题的改进非线性共轭梯度算法

T. Diphofu, P. Kaelo, A. Tufa
{"title":"无约束优化和投资组合选择问题的改进非线性共轭梯度算法","authors":"T. Diphofu, P. Kaelo, A. Tufa","doi":"10.1051/ro/2023037","DOIUrl":null,"url":null,"abstract":"Conjugate gradient methods play a vital role in finding solutions of large-scale optimization problems due to their simplicity to implement, low memory requirements and as well as their convergence properties. In this paper, we propose a new conjugate gradient method that has a direction satisfying the sufficient descent property.  We establish global convergence of the new method under the strong Wolfe line search conditions. Numerical results show that the new method  performs better than other relevant methods in the literature. Furthermore, we use the new method to solve a portfolio selection problem.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":"25 1","pages":"817-835"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified nonlinear conjugate gradient algorithm for unconstrained optimization and portfolio selection problems\",\"authors\":\"T. Diphofu, P. Kaelo, A. Tufa\",\"doi\":\"10.1051/ro/2023037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conjugate gradient methods play a vital role in finding solutions of large-scale optimization problems due to their simplicity to implement, low memory requirements and as well as their convergence properties. In this paper, we propose a new conjugate gradient method that has a direction satisfying the sufficient descent property.  We establish global convergence of the new method under the strong Wolfe line search conditions. Numerical results show that the new method  performs better than other relevant methods in the literature. Furthermore, we use the new method to solve a portfolio selection problem.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":\"25 1\",\"pages\":\"817-835\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

共轭梯度法具有实现简单、内存要求低、收敛性好等优点,在求解大规模优化问题中发挥着重要作用。本文提出了一种新的共轭梯度法,其方向满足充分下降性质。在强Wolfe线搜索条件下,建立了新方法的全局收敛性。数值计算结果表明,该方法优于文献中已有的相关方法。此外,我们还将该方法用于解决投资组合选择问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified nonlinear conjugate gradient algorithm for unconstrained optimization and portfolio selection problems
Conjugate gradient methods play a vital role in finding solutions of large-scale optimization problems due to their simplicity to implement, low memory requirements and as well as their convergence properties. In this paper, we propose a new conjugate gradient method that has a direction satisfying the sufficient descent property.  We establish global convergence of the new method under the strong Wolfe line search conditions. Numerical results show that the new method  performs better than other relevant methods in the literature. Furthermore, we use the new method to solve a portfolio selection problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信