自动驾驶中KLT算法的参数分析

Young-Hwan Han, Changhyeon Kim, Youngseok Jang, H. Kim
{"title":"自动驾驶中KLT算法的参数分析","authors":"Young-Hwan Han, Changhyeon Kim, Youngseok Jang, H. Kim","doi":"10.23919/ICCAS50221.2020.9268239","DOIUrl":null,"url":null,"abstract":"The Kanade-Lucas-Tomasi(KLT) tracking algorithm is a widely used feature tracking algorithm in the field of computer vision(CV). The selection of proper warping parameters for the estimation of optical flow between adjacent image frames is crucial to obtain accurate and robust tracking results. We compare the various warping parameter settings in an autonomous driving environment based on the modified KLT algorithm with some well-known techniques. The skew and rotation parameters did not show better performance, but rather made convergence more difficult. The scale-parameter-added model has the best performance among the sets of warping parameters.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"4 1","pages":"184-189"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Parametric analysis of KLT algorithm in autonomous driving\",\"authors\":\"Young-Hwan Han, Changhyeon Kim, Youngseok Jang, H. Kim\",\"doi\":\"10.23919/ICCAS50221.2020.9268239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kanade-Lucas-Tomasi(KLT) tracking algorithm is a widely used feature tracking algorithm in the field of computer vision(CV). The selection of proper warping parameters for the estimation of optical flow between adjacent image frames is crucial to obtain accurate and robust tracking results. We compare the various warping parameter settings in an autonomous driving environment based on the modified KLT algorithm with some well-known techniques. The skew and rotation parameters did not show better performance, but rather made convergence more difficult. The scale-parameter-added model has the best performance among the sets of warping parameters.\",\"PeriodicalId\":6732,\"journal\":{\"name\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"4 1\",\"pages\":\"184-189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS50221.2020.9268239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Kanade-Lucas-Tomasi(KLT)跟踪算法是计算机视觉(CV)领域中应用广泛的特征跟踪算法。选取合适的弯曲参数估计相邻图像帧之间的光流是获得准确和鲁棒跟踪结果的关键。我们将基于改进KLT算法的自动驾驶环境中的各种翘曲参数设置与一些知名技术进行了比较。歪斜和旋转参数没有表现出更好的性能,反而使收敛更加困难。在多组翘曲参数中,添加尺度参数的模型性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric analysis of KLT algorithm in autonomous driving
The Kanade-Lucas-Tomasi(KLT) tracking algorithm is a widely used feature tracking algorithm in the field of computer vision(CV). The selection of proper warping parameters for the estimation of optical flow between adjacent image frames is crucial to obtain accurate and robust tracking results. We compare the various warping parameter settings in an autonomous driving environment based on the modified KLT algorithm with some well-known techniques. The skew and rotation parameters did not show better performance, but rather made convergence more difficult. The scale-parameter-added model has the best performance among the sets of warping parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信