弹道冲击:用ML模型预测UHPC目标的侵彻深度

IF 1.3 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Nabodyuti Das, B. Darshan, Prakash Nanthagopalan
{"title":"弹道冲击:用ML模型预测UHPC目标的侵彻深度","authors":"Nabodyuti Das, B. Darshan, Prakash Nanthagopalan","doi":"10.1680/jcoma.23.00006","DOIUrl":null,"url":null,"abstract":"This paper presents the application of Artificial Neural Network (ANN) model for predicting the penetration depth under projectile impact in Ultra High Performance Concrete (UHPC) targets containing steel fibers. Despite the availability of a large number of existing empirical models, the prediction of penetration depth remained inconclusive, partly owing to the phenomenon's complexity and partly due to the limitation of statistical regression. From the results of this study, it is evident that the ANN model is capable of predicting the penetration depth of UHPC more accurately than the other machine learning models (Linear Regression (LR), Decision Tree Regression (DTR), and Random Forest Regression (RFR)) and empirical formulae. The ANN model achieved a lower Root Mean Square Error (RMSE) of 11.68 compared to other machine learning models (RMSE – 16.66 to 19.74) and empirical equations (RMSE – 25.17 to 53.42), when applied to the test dataset. The velocity, impact energy, diameter of the projectile, and thickness of the UHPC targets are the most significant parameters (p-value <5%) for predicting the penetration depth using ANN and MLR models.","PeriodicalId":51787,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Construction Materials","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ballistic impact: predicting penetration depth in UHPC targets with ML models\",\"authors\":\"Nabodyuti Das, B. Darshan, Prakash Nanthagopalan\",\"doi\":\"10.1680/jcoma.23.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of Artificial Neural Network (ANN) model for predicting the penetration depth under projectile impact in Ultra High Performance Concrete (UHPC) targets containing steel fibers. Despite the availability of a large number of existing empirical models, the prediction of penetration depth remained inconclusive, partly owing to the phenomenon's complexity and partly due to the limitation of statistical regression. From the results of this study, it is evident that the ANN model is capable of predicting the penetration depth of UHPC more accurately than the other machine learning models (Linear Regression (LR), Decision Tree Regression (DTR), and Random Forest Regression (RFR)) and empirical formulae. The ANN model achieved a lower Root Mean Square Error (RMSE) of 11.68 compared to other machine learning models (RMSE – 16.66 to 19.74) and empirical equations (RMSE – 25.17 to 53.42), when applied to the test dataset. The velocity, impact energy, diameter of the projectile, and thickness of the UHPC targets are the most significant parameters (p-value <5%) for predicting the penetration depth using ANN and MLR models.\",\"PeriodicalId\":51787,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Construction Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Construction Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jcoma.23.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Construction Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jcoma.23.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了人工神经网络(ANN)模型在含钢纤维超高性能混凝土(UHPC)靶体弹丸冲击侵彻深度预测中的应用。尽管已有大量的经验模型,但由于现象的复杂性和统计回归的局限性,对渗透深度的预测仍然不确定。从本研究的结果可以看出,与其他机器学习模型(线性回归(LR),决策树回归(DTR)和随机森林回归(RFR))和经验公式相比,人工神经网络模型能够更准确地预测UHPC的渗透深度。当应用于测试数据集时,与其他机器学习模型(RMSE - 16.66至19.74)和经验方程(RMSE - 25.17至53.42)相比,ANN模型的均方根误差(RMSE)较低,为11.68。速度、冲击能、弹丸直径和UHPC目标厚度是利用人工神经网络和MLR模型预测侵彻深度的最显著参数(p值<5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ballistic impact: predicting penetration depth in UHPC targets with ML models
This paper presents the application of Artificial Neural Network (ANN) model for predicting the penetration depth under projectile impact in Ultra High Performance Concrete (UHPC) targets containing steel fibers. Despite the availability of a large number of existing empirical models, the prediction of penetration depth remained inconclusive, partly owing to the phenomenon's complexity and partly due to the limitation of statistical regression. From the results of this study, it is evident that the ANN model is capable of predicting the penetration depth of UHPC more accurately than the other machine learning models (Linear Regression (LR), Decision Tree Regression (DTR), and Random Forest Regression (RFR)) and empirical formulae. The ANN model achieved a lower Root Mean Square Error (RMSE) of 11.68 compared to other machine learning models (RMSE – 16.66 to 19.74) and empirical equations (RMSE – 25.17 to 53.42), when applied to the test dataset. The velocity, impact energy, diameter of the projectile, and thickness of the UHPC targets are the most significant parameters (p-value <5%) for predicting the penetration depth using ANN and MLR models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信