潜在多视图子空间聚类

Changqing Zhang, Q. Hu, H. Fu, Peng Fei Zhu, Xiaochun Cao
{"title":"潜在多视图子空间聚类","authors":"Changqing Zhang, Q. Hu, H. Fu, Peng Fei Zhu, Xiaochun Cao","doi":"10.1109/CVPR.2017.461","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Latent Multi-view Subspace Clustering (LMSC) method, which clusters data points with latent representation and simultaneously explores underlying complementary information from multiple views. Unlike most existing single view subspace clustering methods that reconstruct data points using original features, our method seeks the underlying latent representation and simultaneously performs data reconstruction based on the learned latent representation. With the complementarity of multiple views, the latent representation could depict data themselves more comprehensively than each single view individually, accordingly makes subspace representation more accurate and robust as well. The proposed method is intuitive and can be optimized efficiently by using the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) algorithm. Extensive experiments on benchmark datasets have validated the effectiveness of our proposed method.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"11 1","pages":"4333-4341"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"314","resultStr":"{\"title\":\"Latent Multi-view Subspace Clustering\",\"authors\":\"Changqing Zhang, Q. Hu, H. Fu, Peng Fei Zhu, Xiaochun Cao\",\"doi\":\"10.1109/CVPR.2017.461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel Latent Multi-view Subspace Clustering (LMSC) method, which clusters data points with latent representation and simultaneously explores underlying complementary information from multiple views. Unlike most existing single view subspace clustering methods that reconstruct data points using original features, our method seeks the underlying latent representation and simultaneously performs data reconstruction based on the learned latent representation. With the complementarity of multiple views, the latent representation could depict data themselves more comprehensively than each single view individually, accordingly makes subspace representation more accurate and robust as well. The proposed method is intuitive and can be optimized efficiently by using the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) algorithm. Extensive experiments on benchmark datasets have validated the effectiveness of our proposed method.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"11 1\",\"pages\":\"4333-4341\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"314\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 314

摘要

本文提出了一种新的潜在多视图子空间聚类(LMSC)方法,该方法将具有潜在表示的数据点聚类,同时从多个视图中挖掘潜在的互补信息。与大多数现有的单视图子空间聚类方法使用原始特征重构数据点不同,我们的方法寻求潜在的潜在表示,同时基于学习到的潜在表示进行数据重构。由于多个视图的互补性,潜在表示可以比单个视图更全面地描述数据本身,从而使子空间表示更加准确和鲁棒。该方法直观,并可通过增广拉格朗日乘法器交替方向最小化(ALM-ADM)算法进行高效优化。在基准数据集上的大量实验验证了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Multi-view Subspace Clustering
In this paper, we propose a novel Latent Multi-view Subspace Clustering (LMSC) method, which clusters data points with latent representation and simultaneously explores underlying complementary information from multiple views. Unlike most existing single view subspace clustering methods that reconstruct data points using original features, our method seeks the underlying latent representation and simultaneously performs data reconstruction based on the learned latent representation. With the complementarity of multiple views, the latent representation could depict data themselves more comprehensively than each single view individually, accordingly makes subspace representation more accurate and robust as well. The proposed method is intuitive and can be optimized efficiently by using the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) algorithm. Extensive experiments on benchmark datasets have validated the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信