Banach代数第二对偶的弱模适应性

IF 0.3 Q4 MATHEMATICS
Shabani Soltanmoradi, Davood Ebrahimi Bagha, Pourbahri Rahpeyma
{"title":"Banach代数第二对偶的弱模适应性","authors":"Shabani Soltanmoradi, Davood Ebrahimi Bagha, Pourbahri Rahpeyma","doi":"10.12697/acutm.2021.25.19","DOIUrl":null,"url":null,"abstract":"In this paper we study the weak module amenability of Banach algebras which are Banach modules over another Banach algebra with compatible actions. We show that for every module derivation D : A ↦ ( A/J_A )∗ if D∗∗(A∗∗) ⊆ WAP (A/J_A ), then weak module amenability of A∗∗ implies that of A. Also we prove that under certain conditions for the module derivation D, if A∗∗ is weak module amenable then A is also weak module amenable.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"23 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak module amenability for the second dual of a Banach algebra\",\"authors\":\"Shabani Soltanmoradi, Davood Ebrahimi Bagha, Pourbahri Rahpeyma\",\"doi\":\"10.12697/acutm.2021.25.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the weak module amenability of Banach algebras which are Banach modules over another Banach algebra with compatible actions. We show that for every module derivation D : A ↦ ( A/J_A )∗ if D∗∗(A∗∗) ⊆ WAP (A/J_A ), then weak module amenability of A∗∗ implies that of A. Also we prove that under certain conditions for the module derivation D, if A∗∗ is weak module amenable then A is also weak module amenable.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2021.25.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2021.25.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有相容作用的Banach代数上的Banach模的弱模适应性。证明了对于每一个模块派生D: A≠(A/J_A)∗,如果D∗∗(A∗∗)≥WAP (A/J_A),则A∗∗的弱模块可适性蕴涵着A的弱模块可适性。同时证明了对于模块派生D,在一定条件下,如果A∗∗是弱模块可适性,则A也是弱模块可适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak module amenability for the second dual of a Banach algebra
In this paper we study the weak module amenability of Banach algebras which are Banach modules over another Banach algebra with compatible actions. We show that for every module derivation D : A ↦ ( A/J_A )∗ if D∗∗(A∗∗) ⊆ WAP (A/J_A ), then weak module amenability of A∗∗ implies that of A. Also we prove that under certain conditions for the module derivation D, if A∗∗ is weak module amenable then A is also weak module amenable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信