关于游戏选项的缺口风险最小化

IF 0.7 Q3 STATISTICS & PROBABILITY
Y. Dolinsky
{"title":"关于游戏选项的缺口风险最小化","authors":"Y. Dolinsky","doi":"10.15559/20-vmsta164","DOIUrl":null,"url":null,"abstract":"In this paper we study the existence of an optimal hedging strategy for the shortfall risk measure in the game options setup. We consider the continuous time Black--Scholes (BS) model. Our first result says that in the case where the game contingent claim (GCC) can be exercised only on a finite set of times, there exists an optimal strategy. Our second and main result is an example which demonstrates that for the case where the GCC can be stopped on the all time interval, optimal portfolio strategies need not always exist.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On shortfall risk minimization for game options\",\"authors\":\"Y. Dolinsky\",\"doi\":\"10.15559/20-vmsta164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the existence of an optimal hedging strategy for the shortfall risk measure in the game options setup. We consider the continuous time Black--Scholes (BS) model. Our first result says that in the case where the game contingent claim (GCC) can be exercised only on a finite set of times, there exists an optimal strategy. Our second and main result is an example which demonstrates that for the case where the GCC can be stopped on the all time interval, optimal portfolio strategies need not always exist.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/20-vmsta164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/20-vmsta164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了博弈期权设置中差额风险度量的最优对冲策略的存在性。我们考虑连续时间Black—Scholes (BS)模型。我们的第一个结果表明,在博弈偶然索赔(GCC)只能在有限时间内执行的情况下,存在最优策略。我们的第二个主要结果是一个例子,它证明了对于GCC可以在所有时间间隔停止的情况,最优投资组合策略并不总是存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On shortfall risk minimization for game options
In this paper we study the existence of an optimal hedging strategy for the shortfall risk measure in the game options setup. We consider the continuous time Black--Scholes (BS) model. Our first result says that in the case where the game contingent claim (GCC) can be exercised only on a finite set of times, there exists an optimal strategy. Our second and main result is an example which demonstrates that for the case where the GCC can be stopped on the all time interval, optimal portfolio strategies need not always exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信