{"title":"三波段超导体中的集体激发","authors":"K. V. Grigorishin","doi":"10.5488/CMP.26.23702","DOIUrl":null,"url":null,"abstract":"We investigate equilibrium states, magnetic response and the normal oscillations of internal degrees of freedom (Higgs modes and Goldstone modes) of three-band superconductors accounting the terms of both internal proximity effect and the ``drag'' effect (intergradient interaction) in the Lagrangian. Both the Goldstone mode and the Higgs mode are split into three branches each: common mode oscillations and two modes of anti-phase oscillations, which are analogous to the Leggett mode in two-band superconductors. It is demonstrated that the second and third branches are nonphysical, and they can be removed by special choice of coefficients at the ``drag'' terms in Lagrangian. As a result, three-band superconductors are characterized by only single coherence length. Spectrum of the common mode Higgs oscillations has been obtained. The magnetic penetration depth is determined with densities of superconducting electrons in each band, although the drag terms renormalize the carrier masses.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"56 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective excitations in three-band superconductors\",\"authors\":\"K. V. Grigorishin\",\"doi\":\"10.5488/CMP.26.23702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate equilibrium states, magnetic response and the normal oscillations of internal degrees of freedom (Higgs modes and Goldstone modes) of three-band superconductors accounting the terms of both internal proximity effect and the ``drag'' effect (intergradient interaction) in the Lagrangian. Both the Goldstone mode and the Higgs mode are split into three branches each: common mode oscillations and two modes of anti-phase oscillations, which are analogous to the Leggett mode in two-band superconductors. It is demonstrated that the second and third branches are nonphysical, and they can be removed by special choice of coefficients at the ``drag'' terms in Lagrangian. As a result, three-band superconductors are characterized by only single coherence length. Spectrum of the common mode Higgs oscillations has been obtained. The magnetic penetration depth is determined with densities of superconducting electrons in each band, although the drag terms renormalize the carrier masses.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.26.23702\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.23702","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Collective excitations in three-band superconductors
We investigate equilibrium states, magnetic response and the normal oscillations of internal degrees of freedom (Higgs modes and Goldstone modes) of three-band superconductors accounting the terms of both internal proximity effect and the ``drag'' effect (intergradient interaction) in the Lagrangian. Both the Goldstone mode and the Higgs mode are split into three branches each: common mode oscillations and two modes of anti-phase oscillations, which are analogous to the Leggett mode in two-band superconductors. It is demonstrated that the second and third branches are nonphysical, and they can be removed by special choice of coefficients at the ``drag'' terms in Lagrangian. As a result, three-band superconductors are characterized by only single coherence length. Spectrum of the common mode Higgs oscillations has been obtained. The magnetic penetration depth is determined with densities of superconducting electrons in each band, although the drag terms renormalize the carrier masses.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.