伽罗瓦域乘法器验证与调试的计算机代数方法

Tiankai Su, Atif Yasin, Cunxi Yu, M. Ciesielski
{"title":"伽罗瓦域乘法器验证与调试的计算机代数方法","authors":"Tiankai Su, Atif Yasin, Cunxi Yu, M. Ciesielski","doi":"10.1109/ISCAS.2018.8351397","DOIUrl":null,"url":null,"abstract":"The paper presents a novel method to verify and debug gate-level arithmetic circuits implemented in Galois Field arithmetic. The method is based on forward reduction of the specification polynomials of the circuit in GF(2m) using GF(2) models of its logic gates. We define a forward variable order “FO >” and the rules of forward reduction that enable verification, bug detection, and automatic bug correction in the circuit. By analyzing the remainder generated by forward reduction, the method can determine whether the circuit is buggy, and finds the location and the type of the bug. The experiments performed on Mastrovito and Montgomery multipliers show that our debugging method is independent of the location of the bug(s) and the debugging time is comparable to the time needed to verify the bug-free circuit.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"17 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Computer Algebraic Approach to Verification and Debugging of Galois Field Multipliers\",\"authors\":\"Tiankai Su, Atif Yasin, Cunxi Yu, M. Ciesielski\",\"doi\":\"10.1109/ISCAS.2018.8351397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a novel method to verify and debug gate-level arithmetic circuits implemented in Galois Field arithmetic. The method is based on forward reduction of the specification polynomials of the circuit in GF(2m) using GF(2) models of its logic gates. We define a forward variable order “FO >” and the rules of forward reduction that enable verification, bug detection, and automatic bug correction in the circuit. By analyzing the remainder generated by forward reduction, the method can determine whether the circuit is buggy, and finds the location and the type of the bug. The experiments performed on Mastrovito and Montgomery multipliers show that our debugging method is independent of the location of the bug(s) and the debugging time is comparable to the time needed to verify the bug-free circuit.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"17 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种验证和调试伽罗瓦场算法中实现的门级算术电路的新方法。该方法基于在GF(2m)中使用其逻辑门的GF(2)模型对电路的规格多项式进行正演约简。我们定义了一个前向可变阶数“fo>”和前向约简规则,使电路中的验证、错误检测和自动错误纠正成为可能。该方法通过分析前向约简产生的余数,判断电路是否存在bug,并找到bug的位置和类型。在Mastrovito和Montgomery乘法器上进行的实验表明,我们的调试方法与错误的位置无关,并且调试时间与验证无错误电路所需的时间相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer Algebraic Approach to Verification and Debugging of Galois Field Multipliers
The paper presents a novel method to verify and debug gate-level arithmetic circuits implemented in Galois Field arithmetic. The method is based on forward reduction of the specification polynomials of the circuit in GF(2m) using GF(2) models of its logic gates. We define a forward variable order “FO >” and the rules of forward reduction that enable verification, bug detection, and automatic bug correction in the circuit. By analyzing the remainder generated by forward reduction, the method can determine whether the circuit is buggy, and finds the location and the type of the bug. The experiments performed on Mastrovito and Montgomery multipliers show that our debugging method is independent of the location of the bug(s) and the debugging time is comparable to the time needed to verify the bug-free circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信