{"title":"具有隐私保证的自适应错误发现率控制","authors":"Xintao Xia, Zhanrui Cai","doi":"10.48550/arXiv.2305.19482","DOIUrl":null,"url":null,"abstract":"Differentially private multiple testing procedures can protect the information of individuals used in hypothesis tests while guaranteeing a small fraction of false discoveries. In this paper, we propose a differentially private adaptive FDR control method that can control the classic FDR metric exactly at a user-specified level $\\alpha$ with privacy guarantee, which is a non-trivial improvement compared to the differentially private Benjamini-Hochberg method proposed in Dwork et al. (2021). Our analysis is based on two key insights: 1) a novel p-value transformation that preserves both privacy and the mirror conservative property, and 2) a mirror peeling algorithm that allows the construction of the filtration and application of the optimal stopping technique. Numerical studies demonstrate that the proposed DP-AdaPT performs better compared to the existing differentially private FDR control methods. Compared to the non-private AdaPT, it incurs a small accuracy loss but significantly reduces the computation cost.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"6 1","pages":"252:1-252:35"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive False Discovery Rate Control with Privacy Guarantee\",\"authors\":\"Xintao Xia, Zhanrui Cai\",\"doi\":\"10.48550/arXiv.2305.19482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differentially private multiple testing procedures can protect the information of individuals used in hypothesis tests while guaranteeing a small fraction of false discoveries. In this paper, we propose a differentially private adaptive FDR control method that can control the classic FDR metric exactly at a user-specified level $\\\\alpha$ with privacy guarantee, which is a non-trivial improvement compared to the differentially private Benjamini-Hochberg method proposed in Dwork et al. (2021). Our analysis is based on two key insights: 1) a novel p-value transformation that preserves both privacy and the mirror conservative property, and 2) a mirror peeling algorithm that allows the construction of the filtration and application of the optimal stopping technique. Numerical studies demonstrate that the proposed DP-AdaPT performs better compared to the existing differentially private FDR control methods. Compared to the non-private AdaPT, it incurs a small accuracy loss but significantly reduces the computation cost.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"6 1\",\"pages\":\"252:1-252:35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.19482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.19482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive False Discovery Rate Control with Privacy Guarantee
Differentially private multiple testing procedures can protect the information of individuals used in hypothesis tests while guaranteeing a small fraction of false discoveries. In this paper, we propose a differentially private adaptive FDR control method that can control the classic FDR metric exactly at a user-specified level $\alpha$ with privacy guarantee, which is a non-trivial improvement compared to the differentially private Benjamini-Hochberg method proposed in Dwork et al. (2021). Our analysis is based on two key insights: 1) a novel p-value transformation that preserves both privacy and the mirror conservative property, and 2) a mirror peeling algorithm that allows the construction of the filtration and application of the optimal stopping technique. Numerical studies demonstrate that the proposed DP-AdaPT performs better compared to the existing differentially private FDR control methods. Compared to the non-private AdaPT, it incurs a small accuracy loss but significantly reduces the computation cost.