小麦抗病育种研究进展

Gadisa Alemu
{"title":"小麦抗病育种研究进展","authors":"Gadisa Alemu","doi":"10.23880/oajmb-16000142","DOIUrl":null,"url":null,"abstract":"Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end - use quality. Wheat breeding is focused on high yield, pathogen resistance and abiotic stress tolerance. Among diseases of wheat yellow rust, stem rust, and leaf rust are the most damaging diseases of wheat and other small grain cereals . Disease resistance in wheat breeding with one exception, the diseases of wheat that is important because of their effect on yield. Resistance to all diseases together can is important to avoid an unexpected loss in effectiveness of the resistance of a cu ltivar to a major disease. The genetic resistance to stem rust, leaf rust and yellow rust can be characterized as qualitative and quantitative resistances. Vertical resistance is specific to pathogen isolates based on single or very few genes. Race - specifi c is used to describe resistance that interacts differentially with pathogen races. Quantitative resistance is defined as resistance that varies in continuous way between the various phenotypes of the host population, from almost imperceptible to quite str ong. With the need to accelerate the development of improved varieties, genomics - assisted breeding is becoming an important tool in breeding programs. With marker - assisted selection, there has been success in breeding for disease resistance. Generally, bre eding programs have successfully implemented molecular markers to assist in the development of cultivars with stem, leaf and stripe rust resistance genes. When new rust resistance genes are to be deployed in wheat breeding programs, it unfortunately takes several years before the new sources of resistance will become available in commercial wheat cultivars. This is due to the long process involved in the establishment of pure breeding wheat lines. Biotechnology based techniques are available to accelerate t he breeding process via doubled haploid production.","PeriodicalId":19559,"journal":{"name":"Open Access Journal of Microbiology & Biotechnology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Wheat Breeding for Disease Resistance: Review\",\"authors\":\"Gadisa Alemu\",\"doi\":\"10.23880/oajmb-16000142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end - use quality. Wheat breeding is focused on high yield, pathogen resistance and abiotic stress tolerance. Among diseases of wheat yellow rust, stem rust, and leaf rust are the most damaging diseases of wheat and other small grain cereals . Disease resistance in wheat breeding with one exception, the diseases of wheat that is important because of their effect on yield. Resistance to all diseases together can is important to avoid an unexpected loss in effectiveness of the resistance of a cu ltivar to a major disease. The genetic resistance to stem rust, leaf rust and yellow rust can be characterized as qualitative and quantitative resistances. Vertical resistance is specific to pathogen isolates based on single or very few genes. Race - specifi c is used to describe resistance that interacts differentially with pathogen races. Quantitative resistance is defined as resistance that varies in continuous way between the various phenotypes of the host population, from almost imperceptible to quite str ong. With the need to accelerate the development of improved varieties, genomics - assisted breeding is becoming an important tool in breeding programs. With marker - assisted selection, there has been success in breeding for disease resistance. Generally, bre eding programs have successfully implemented molecular markers to assist in the development of cultivars with stem, leaf and stripe rust resistance genes. When new rust resistance genes are to be deployed in wheat breeding programs, it unfortunately takes several years before the new sources of resistance will become available in commercial wheat cultivars. This is due to the long process involved in the establishment of pure breeding wheat lines. Biotechnology based techniques are available to accelerate t he breeding process via doubled haploid production.\",\"PeriodicalId\":19559,\"journal\":{\"name\":\"Open Access Journal of Microbiology & Biotechnology\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Access Journal of Microbiology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/oajmb-16000142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Journal of Microbiology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/oajmb-16000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

抗病育种是植物育种计划的中心焦点,因为任何成功的品种都必须具有高产、抗病、农艺性能和最终使用质量的完整包装。小麦育种的重点是高产、抗病和抗非生物胁迫。在小麦黄锈病中,茎锈病和叶锈病是小麦和其他小粒谷物最具破坏性的病害。抗病在小麦育种中有一个例外,那就是小麦的病害,因为它们对产量的影响是重要的。对所有疾病的综合抵抗力对于避免一个品种对一种主要疾病的抵抗力意外丧失是很重要的。对茎锈病、叶锈病和黄锈病的遗传抗性可分为定性抗性和定量抗性。垂直抗性是基于单一或极少数基因的病原体分离株所特有的。种族特异性用于描述与病原体种族不同的相互作用的耐药性。数量抗性被定义为在宿主种群的不同表型之间连续变化的抗性,从几乎难以察觉到相当强烈。随着改良品种发展的需要,基因组辅助育种正成为育种计划的重要工具。有了标记辅助选择,抗病育种已经取得了成功。一般来说,育种计划已经成功地利用分子标记来帮助培育具有茎、叶和条锈病抗性基因的品种。当新的抗锈病基因被用于小麦育种计划时,不幸的是,要在商品小麦品种中获得新的抗锈病基因需要几年的时间。这是由于建立纯种小麦品系需要一个漫长的过程。以生物技术为基础的技术可以通过加倍单倍体的生产来加速育种过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wheat Breeding for Disease Resistance: Review
Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end - use quality. Wheat breeding is focused on high yield, pathogen resistance and abiotic stress tolerance. Among diseases of wheat yellow rust, stem rust, and leaf rust are the most damaging diseases of wheat and other small grain cereals . Disease resistance in wheat breeding with one exception, the diseases of wheat that is important because of their effect on yield. Resistance to all diseases together can is important to avoid an unexpected loss in effectiveness of the resistance of a cu ltivar to a major disease. The genetic resistance to stem rust, leaf rust and yellow rust can be characterized as qualitative and quantitative resistances. Vertical resistance is specific to pathogen isolates based on single or very few genes. Race - specifi c is used to describe resistance that interacts differentially with pathogen races. Quantitative resistance is defined as resistance that varies in continuous way between the various phenotypes of the host population, from almost imperceptible to quite str ong. With the need to accelerate the development of improved varieties, genomics - assisted breeding is becoming an important tool in breeding programs. With marker - assisted selection, there has been success in breeding for disease resistance. Generally, bre eding programs have successfully implemented molecular markers to assist in the development of cultivars with stem, leaf and stripe rust resistance genes. When new rust resistance genes are to be deployed in wheat breeding programs, it unfortunately takes several years before the new sources of resistance will become available in commercial wheat cultivars. This is due to the long process involved in the establishment of pure breeding wheat lines. Biotechnology based techniques are available to accelerate t he breeding process via doubled haploid production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信