有限计算初等阿贝尔p群的无伪族

IF 0.1 Q4 MATHEMATICS
M. Anokhin
{"title":"有限计算初等阿贝尔p群的无伪族","authors":"M. Anokhin","doi":"10.1515/gcc-2017-0001","DOIUrl":null,"url":null,"abstract":"Abstract We initiate the study of (weakly) pseudo-free families of computational elementary abelian p-groups, where p is an arbitrary fixed prime. We restrict ourselves to families of computational elementary abelian p-groups G d {G_{d}} such that for every index d, each element of G d {G_{d}} is represented by a single bit string of length polynomial in the length of d. First, we prove that pseudo-freeness and weak pseudo-freeness for families of computational elementary abelian p-groups are equivalent. Second, we give some necessary and sufficient conditions for a family of computational elementary abelian p-groups to be pseudo-free (provided that at least one of two additional conditions holds). Third, we establish some necessary and sufficient conditions for the existence of pseudo-free families of computational elementary abelian p-groups.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"78 1","pages":"1 - 18"},"PeriodicalIF":0.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pseudo-free families of finite computational elementary abelian p-groups\",\"authors\":\"M. Anokhin\",\"doi\":\"10.1515/gcc-2017-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We initiate the study of (weakly) pseudo-free families of computational elementary abelian p-groups, where p is an arbitrary fixed prime. We restrict ourselves to families of computational elementary abelian p-groups G d {G_{d}} such that for every index d, each element of G d {G_{d}} is represented by a single bit string of length polynomial in the length of d. First, we prove that pseudo-freeness and weak pseudo-freeness for families of computational elementary abelian p-groups are equivalent. Second, we give some necessary and sufficient conditions for a family of computational elementary abelian p-groups to be pseudo-free (provided that at least one of two additional conditions holds). Third, we establish some necessary and sufficient conditions for the existence of pseudo-free families of computational elementary abelian p-groups.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"78 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2017-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2017-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

研究了计算初等阿贝尔p群的(弱)伪自由族,其中p是任意固定素数。我们将自己限制在计算初等阿贝尔p群G d {G_{d}}的族上,使得对于每一个指标d, G d {G_{d}}的每一个元素都由d的长度为多项式的单比特串表示。首先,我们证明了计算初等阿贝尔p群族的伪自由和弱伪自由是等价的。其次,我们给出了一类计算初等阿贝尔p群是伪自由的一些充分必要条件(前提是两个附加条件中至少有一个成立)。第三,建立了计算初等阿贝尔p群的无伪族存在的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-free families of finite computational elementary abelian p-groups
Abstract We initiate the study of (weakly) pseudo-free families of computational elementary abelian p-groups, where p is an arbitrary fixed prime. We restrict ourselves to families of computational elementary abelian p-groups G d {G_{d}} such that for every index d, each element of G d {G_{d}} is represented by a single bit string of length polynomial in the length of d. First, we prove that pseudo-freeness and weak pseudo-freeness for families of computational elementary abelian p-groups are equivalent. Second, we give some necessary and sufficient conditions for a family of computational elementary abelian p-groups to be pseudo-free (provided that at least one of two additional conditions holds). Third, we establish some necessary and sufficient conditions for the existence of pseudo-free families of computational elementary abelian p-groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信