被虚标量场困扰的静态时空。1 .无质量情况下的分类和全局结构

Cristián Martínez, Masato Nozawa
{"title":"被虚标量场困扰的静态时空。1 .无质量情况下的分类和全局结构","authors":"Cristián Martínez, Masato Nozawa","doi":"10.1103/PHYSREVD.103.024003","DOIUrl":null,"url":null,"abstract":"We discuss various novel features of $n(\\ge 4)$-dimensional spacetimes sourced by a massless (non-)phantom scalar field in general relativity. Assuming that the metric is a warped product of static two-dimensional Lorentzian spacetime and an $(n-2)$-dimensional Einstein space $K^{n-2}$ with curvature $k=0, \\pm 1$, and that the scalar field depends only on the radial variable, we present a complete classification of static solutions for both signs of kinetic term. Contrary to the case with a non-phantom scalar field, the Fisher solution is not unique, and there exist two additional metrics corresponding to the generalizations of the Ellis-Gibbons solution and the Ellis-Bronnikov solution. We explore the maximal extension of these solutions in detail by the analysis of null/spacelike geodesics and singularity. For the phantom Fisher and Ellis-Gibbons solutions, we find that there inevitably appear parallelly propagated (p.p) curvature singularities in the parameter region where there are no scalar curvature singularities. Interestingly, the areal radius blows up at these p.p curvature singularities, which are nevertheless accessible within a finite affine time along the radial null geodesics. It follows that only the Ellis-Bronnikov solution describes a regular wormhole in the two-sided asymptotically flat spacetime. Using the general transformation relating the Einstein and Jordan frames, we also present a complete classification of solutions with the same symmetry coupled to a conformal scalar field. Additionally, by solving the field equations in the Jordan frame, we prove that this classification is genuinely complete.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Static spacetimes haunted by a phantom scalar field. I. Classification and global structure in the massless case\",\"authors\":\"Cristián Martínez, Masato Nozawa\",\"doi\":\"10.1103/PHYSREVD.103.024003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss various novel features of $n(\\\\ge 4)$-dimensional spacetimes sourced by a massless (non-)phantom scalar field in general relativity. Assuming that the metric is a warped product of static two-dimensional Lorentzian spacetime and an $(n-2)$-dimensional Einstein space $K^{n-2}$ with curvature $k=0, \\\\pm 1$, and that the scalar field depends only on the radial variable, we present a complete classification of static solutions for both signs of kinetic term. Contrary to the case with a non-phantom scalar field, the Fisher solution is not unique, and there exist two additional metrics corresponding to the generalizations of the Ellis-Gibbons solution and the Ellis-Bronnikov solution. We explore the maximal extension of these solutions in detail by the analysis of null/spacelike geodesics and singularity. For the phantom Fisher and Ellis-Gibbons solutions, we find that there inevitably appear parallelly propagated (p.p) curvature singularities in the parameter region where there are no scalar curvature singularities. Interestingly, the areal radius blows up at these p.p curvature singularities, which are nevertheless accessible within a finite affine time along the radial null geodesics. It follows that only the Ellis-Bronnikov solution describes a regular wormhole in the two-sided asymptotically flat spacetime. Using the general transformation relating the Einstein and Jordan frames, we also present a complete classification of solutions with the same symmetry coupled to a conformal scalar field. Additionally, by solving the field equations in the Jordan frame, we prove that this classification is genuinely complete.\",\"PeriodicalId\":8455,\"journal\":{\"name\":\"arXiv: General Relativity and Quantum Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.024003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.024003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们讨论了广义相对论中由无质量(非)虚标量场源的n(\ge 4)$维时空的各种新特征。假设度规是静态二维洛伦兹时空和$(n-2)$维爱因斯坦空间$K^{n-2}$的翘曲积,曲率$K =0, \pm 1$,并且标量场仅依赖于径向变量,我们给出了动力学项两个符号的静态解的完整分类。与非虚标量场的情况相反,Fisher解不是唯一的,并且存在两个额外的度量对应于Ellis-Gibbons解和Ellis-Bronnikov解的推广。通过对零/类空间测地线和奇异点的分析,详细探讨了这些解的极大扩展。对于幻影Fisher和Ellis-Gibbons解,我们发现在没有标量曲率奇点的参数区域不可避免地出现平行传播(p.p)曲率奇点。有趣的是,面半径在这些p.p曲率奇点处爆炸,然而在沿径向零测地线的有限仿射时间内可以到达。由此可见,只有Ellis-Bronnikov解描述了双面渐近平坦时空中的规则虫洞。利用爱因斯坦系和约当系的一般变换,我们也给出了具有相同对称耦合到共形标量场的解的完全分类。此外,通过求解Jordan坐标系中的场方程,我们证明了这种分类是真正完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static spacetimes haunted by a phantom scalar field. I. Classification and global structure in the massless case
We discuss various novel features of $n(\ge 4)$-dimensional spacetimes sourced by a massless (non-)phantom scalar field in general relativity. Assuming that the metric is a warped product of static two-dimensional Lorentzian spacetime and an $(n-2)$-dimensional Einstein space $K^{n-2}$ with curvature $k=0, \pm 1$, and that the scalar field depends only on the radial variable, we present a complete classification of static solutions for both signs of kinetic term. Contrary to the case with a non-phantom scalar field, the Fisher solution is not unique, and there exist two additional metrics corresponding to the generalizations of the Ellis-Gibbons solution and the Ellis-Bronnikov solution. We explore the maximal extension of these solutions in detail by the analysis of null/spacelike geodesics and singularity. For the phantom Fisher and Ellis-Gibbons solutions, we find that there inevitably appear parallelly propagated (p.p) curvature singularities in the parameter region where there are no scalar curvature singularities. Interestingly, the areal radius blows up at these p.p curvature singularities, which are nevertheless accessible within a finite affine time along the radial null geodesics. It follows that only the Ellis-Bronnikov solution describes a regular wormhole in the two-sided asymptotically flat spacetime. Using the general transformation relating the Einstein and Jordan frames, we also present a complete classification of solutions with the same symmetry coupled to a conformal scalar field. Additionally, by solving the field equations in the Jordan frame, we prove that this classification is genuinely complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信