基于物联网的精神压力数字孪生模型(DTMS)

Rahatara Ferdousi, M. A. Hossain, Abdulmotaleb El Saddik
{"title":"基于物联网的精神压力数字孪生模型(DTMS)","authors":"Rahatara Ferdousi, M. A. Hossain, Abdulmotaleb El Saddik","doi":"10.1109/GCWkshps52748.2021.9681996","DOIUrl":null,"url":null,"abstract":"Stress has become one of the mental health adversaries of the COVID-19 pandemic. Several stressors like fear of infection, lockdown, and social distancing are commonly accountable for the stress. The existing stress prediction systems are less compatible to handle diversly changing stressors during COVID-19. The traditional approaches often use incomplete features from limited sources (e.g., only wearable sensor or user device) and static prediction techniques. The Edge Artificial Intelligence (Edge AI) employs machine learning to make data from these sources usable for decision making. Therefore, In this study, we propose a Digital Twin of Mental Stress (DTMS) model that employs IoT-based multimodal sensing and machine learning for mental stress prediction. We obtained 98% accuracy for four widely used Machine Learning(ML) algorithms Naïve Bayes(NB), Random Forest(RF), Multilayer Perceptron(MLP), and Decision Tree (DT). The optimal Digital Twin Features (DTF) could reduce the classification time.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"42 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"IoT-enabled model for Digital Twin Of Mental Stress (DTMS)\",\"authors\":\"Rahatara Ferdousi, M. A. Hossain, Abdulmotaleb El Saddik\",\"doi\":\"10.1109/GCWkshps52748.2021.9681996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stress has become one of the mental health adversaries of the COVID-19 pandemic. Several stressors like fear of infection, lockdown, and social distancing are commonly accountable for the stress. The existing stress prediction systems are less compatible to handle diversly changing stressors during COVID-19. The traditional approaches often use incomplete features from limited sources (e.g., only wearable sensor or user device) and static prediction techniques. The Edge Artificial Intelligence (Edge AI) employs machine learning to make data from these sources usable for decision making. Therefore, In this study, we propose a Digital Twin of Mental Stress (DTMS) model that employs IoT-based multimodal sensing and machine learning for mental stress prediction. We obtained 98% accuracy for four widely used Machine Learning(ML) algorithms Naïve Bayes(NB), Random Forest(RF), Multilayer Perceptron(MLP), and Decision Tree (DT). The optimal Digital Twin Features (DTF) could reduce the classification time.\",\"PeriodicalId\":6802,\"journal\":{\"name\":\"2021 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"42 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps52748.2021.9681996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9681996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

压力已成为COVID-19大流行的心理健康敌人之一。对感染的恐惧、封锁和社交距离等几种压力源通常是造成压力的原因。现有的压力预测系统在应对COVID-19期间各种变化的压力源时兼容性较差。传统方法通常使用来自有限来源的不完整特征(例如,只有可穿戴传感器或用户设备)和静态预测技术。边缘人工智能(Edge AI)利用机器学习使这些来源的数据可用于决策。因此,在本研究中,我们提出了一个心理压力数字孪生(DTMS)模型,该模型采用基于物联网的多模态感知和机器学习进行心理压力预测。我们对四种广泛使用的机器学习(ML)算法Naïve贝叶斯(NB)、随机森林(RF)、多层感知器(MLP)和决策树(DT)获得了98%的准确率。最优数字孪生特征(DTF)可以减少分类时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT-enabled model for Digital Twin Of Mental Stress (DTMS)
Stress has become one of the mental health adversaries of the COVID-19 pandemic. Several stressors like fear of infection, lockdown, and social distancing are commonly accountable for the stress. The existing stress prediction systems are less compatible to handle diversly changing stressors during COVID-19. The traditional approaches often use incomplete features from limited sources (e.g., only wearable sensor or user device) and static prediction techniques. The Edge Artificial Intelligence (Edge AI) employs machine learning to make data from these sources usable for decision making. Therefore, In this study, we propose a Digital Twin of Mental Stress (DTMS) model that employs IoT-based multimodal sensing and machine learning for mental stress prediction. We obtained 98% accuracy for four widely used Machine Learning(ML) algorithms Naïve Bayes(NB), Random Forest(RF), Multilayer Perceptron(MLP), and Decision Tree (DT). The optimal Digital Twin Features (DTF) could reduce the classification time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信