{"title":"求解多目标柔性作业车间调度问题的改进NSGA2算法","authors":"Xu Liang, Yifan Liu, Ming Huang","doi":"10.1109/ICCSNT50940.2020.9304984","DOIUrl":null,"url":null,"abstract":"The NSGA2 algorithm is one of the effective methods to solve multi-objective flexible job shop scheduling problems (MOFJSP). An improved NSGA2 algorithm is proposed to solve the MOFJSP model that aims to minimize the maximum completion time, the total workload of all machines, the total workshop carbon emissions, the total workshop energy consumption, and the delivery time. Firstly, the improved algorithm performs neighborhood search and cross-mutation operation respectively according to the nondominated ranking level and randomly generated probability of individuals to balance their local search and global search ability of the algorithm. Then, in order to further enrich the diversity of the population and improve the solving ability of the improved algorithm, an elite retention combined with random retention is proposed to retain the parent individuals. At last, the experiment proves the effectiveness of the improved NSGA2 algorithm for solving multi-objective flexible job shop scheduling problems.","PeriodicalId":6794,"journal":{"name":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","volume":"40 1","pages":"22-25"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved NSGA2 Algorithm to Solve Multi-Objective Flexible Job Shop Scheduling Problem\",\"authors\":\"Xu Liang, Yifan Liu, Ming Huang\",\"doi\":\"10.1109/ICCSNT50940.2020.9304984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The NSGA2 algorithm is one of the effective methods to solve multi-objective flexible job shop scheduling problems (MOFJSP). An improved NSGA2 algorithm is proposed to solve the MOFJSP model that aims to minimize the maximum completion time, the total workload of all machines, the total workshop carbon emissions, the total workshop energy consumption, and the delivery time. Firstly, the improved algorithm performs neighborhood search and cross-mutation operation respectively according to the nondominated ranking level and randomly generated probability of individuals to balance their local search and global search ability of the algorithm. Then, in order to further enrich the diversity of the population and improve the solving ability of the improved algorithm, an elite retention combined with random retention is proposed to retain the parent individuals. At last, the experiment proves the effectiveness of the improved NSGA2 algorithm for solving multi-objective flexible job shop scheduling problems.\",\"PeriodicalId\":6794,\"journal\":{\"name\":\"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)\",\"volume\":\"40 1\",\"pages\":\"22-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSNT50940.2020.9304984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSNT50940.2020.9304984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved NSGA2 Algorithm to Solve Multi-Objective Flexible Job Shop Scheduling Problem
The NSGA2 algorithm is one of the effective methods to solve multi-objective flexible job shop scheduling problems (MOFJSP). An improved NSGA2 algorithm is proposed to solve the MOFJSP model that aims to minimize the maximum completion time, the total workload of all machines, the total workshop carbon emissions, the total workshop energy consumption, and the delivery time. Firstly, the improved algorithm performs neighborhood search and cross-mutation operation respectively according to the nondominated ranking level and randomly generated probability of individuals to balance their local search and global search ability of the algorithm. Then, in order to further enrich the diversity of the population and improve the solving ability of the improved algorithm, an elite retention combined with random retention is proposed to retain the parent individuals. At last, the experiment proves the effectiveness of the improved NSGA2 algorithm for solving multi-objective flexible job shop scheduling problems.