基于局部二值模式编码的卷积神经网络图像检测

Nan Zhu, Minying Qin, Yuting Yin
{"title":"基于局部二值模式编码的卷积神经网络图像检测","authors":"Nan Zhu, Minying Qin, Yuting Yin","doi":"10.1117/12.2540496","DOIUrl":null,"url":null,"abstract":"With the great development of image display technology and the widespread use of various image acquisition device, recapturing high-quality images from high-fidelity LCD (liquid crystal display) screens becomes relative convenient. These recaptured images pose serious threats on image forensic technologies and bio-authentication systems. In order to prevent the security loophole of image recapture attack, inspired by the effectiveness of LBP (local binary pattern) on recaptured image detection and the satisfactory performance of deep learning techniques on many image forensics tasks, we propose a recaptured image detection method based on convolutional neural networks with local binary patterns coding. The LBP coded maps are extracted as the input of the proposed convolutional neural networks architecture. Extensive experiments on two public high-quality recaptured image databases under two different scenarios demonstrate the superior of our designed method when compared with the state-of-the-art approaches.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"20 1","pages":"1119804 - 1119804-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Recaptured image detection based on convolutional neural networks with local binary patterns coding\",\"authors\":\"Nan Zhu, Minying Qin, Yuting Yin\",\"doi\":\"10.1117/12.2540496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the great development of image display technology and the widespread use of various image acquisition device, recapturing high-quality images from high-fidelity LCD (liquid crystal display) screens becomes relative convenient. These recaptured images pose serious threats on image forensic technologies and bio-authentication systems. In order to prevent the security loophole of image recapture attack, inspired by the effectiveness of LBP (local binary pattern) on recaptured image detection and the satisfactory performance of deep learning techniques on many image forensics tasks, we propose a recaptured image detection method based on convolutional neural networks with local binary patterns coding. The LBP coded maps are extracted as the input of the proposed convolutional neural networks architecture. Extensive experiments on two public high-quality recaptured image databases under two different scenarios demonstrate the superior of our designed method when compared with the state-of-the-art approaches.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"20 1\",\"pages\":\"1119804 - 1119804-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2540496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着图像显示技术的飞速发展和各种图像采集设备的广泛应用,从高保真液晶屏上重获高质量图像变得相对方便。这些被捕获的图像对图像取证技术和生物认证系统构成了严重威胁。为了防止图像再捕获攻击的安全漏洞,受LBP(局部二进制模式)在再捕获图像检测上的有效性和深度学习技术在许多图像取证任务上令人满意的性能的启发,我们提出了一种基于局部二进制模式编码的卷积神经网络的图像再捕获检测方法。提取LBP编码映射作为所提出的卷积神经网络体系结构的输入。在两个公共高质量图像数据库上进行的两种不同场景下的大量实验表明,与最先进的方法相比,我们设计的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recaptured image detection based on convolutional neural networks with local binary patterns coding
With the great development of image display technology and the widespread use of various image acquisition device, recapturing high-quality images from high-fidelity LCD (liquid crystal display) screens becomes relative convenient. These recaptured images pose serious threats on image forensic technologies and bio-authentication systems. In order to prevent the security loophole of image recapture attack, inspired by the effectiveness of LBP (local binary pattern) on recaptured image detection and the satisfactory performance of deep learning techniques on many image forensics tasks, we propose a recaptured image detection method based on convolutional neural networks with local binary patterns coding. The LBP coded maps are extracted as the input of the proposed convolutional neural networks architecture. Extensive experiments on two public high-quality recaptured image databases under two different scenarios demonstrate the superior of our designed method when compared with the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信