具有非线性仿射强度的模型不确定性下的简化形式设置

IF 1 2区 数学 Q3 STATISTICS & PROBABILITY
F. Biagini, Katharina Oberpriller
{"title":"具有非线性仿射强度的模型不确定性下的简化形式设置","authors":"F. Biagini, Katharina Oberpriller","doi":"10.3934/puqr.2021008","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper we extend the reduced-form setting under model uncertainty introduced in [<xref ref-type=\"bibr\" rid=\"b5\">5</xref>] to include intensities following an affine process under parameter uncertainty, as defined in [<xref ref-type=\"bibr\" rid=\"b15\">15</xref>]. This framework allows us to introduce a longevity bond under model uncertainty in a way consistent with the classical case under one prior and to compute its valuation numerically. Moreover, we price a contingent claim with the sublinear conditional operator such that the extended market is still arbitrage-free in the sense of “no arbitrage of the first kind” as in [<xref ref-type=\"bibr\" rid=\"b6\">6</xref>]. </p>","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reduced-form setting under model uncertainty with non-linear affine intensities\",\"authors\":\"F. Biagini, Katharina Oberpriller\",\"doi\":\"10.3934/puqr.2021008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper we extend the reduced-form setting under model uncertainty introduced in [<xref ref-type=\\\"bibr\\\" rid=\\\"b5\\\">5</xref>] to include intensities following an affine process under parameter uncertainty, as defined in [<xref ref-type=\\\"bibr\\\" rid=\\\"b15\\\">15</xref>]. This framework allows us to introduce a longevity bond under model uncertainty in a way consistent with the classical case under one prior and to compute its valuation numerically. Moreover, we price a contingent claim with the sublinear conditional operator such that the extended market is still arbitrage-free in the sense of “no arbitrage of the first kind” as in [<xref ref-type=\\\"bibr\\\" rid=\\\"b6\\\">6</xref>]. </p>\",\"PeriodicalId\":42330,\"journal\":{\"name\":\"Probability Uncertainty and Quantitative Risk\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Uncertainty and Quantitative Risk\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/puqr.2021008\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/puqr.2021008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们扩展了[5]中引入的模型不确定性下的简化形式设置,以包括参数不确定性下仿射过程后的强度,如[15]中定义的那样。该框架允许我们在模型不确定性下以一种与经典情况一致的方式引入长寿债券,并以数值方式计算其估值。此外,我们使用次线性条件算子对或有债权进行定价,使得扩展市场在[6]中“第一类无套利”的意义上仍然是无套利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced-form setting under model uncertainty with non-linear affine intensities

In this paper we extend the reduced-form setting under model uncertainty introduced in [5] to include intensities following an affine process under parameter uncertainty, as defined in [15]. This framework allows us to introduce a longevity bond under model uncertainty in a way consistent with the classical case under one prior and to compute its valuation numerically. Moreover, we price a contingent claim with the sublinear conditional operator such that the extended market is still arbitrage-free in the sense of “no arbitrage of the first kind” as in [6].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
13.30%
发文量
29
审稿时长
12 weeks
期刊介绍: Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1). Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信