T. Miezaki, M. Oura, Tadashi Sakuma, Hidehiro Shinohara
{"title":"图特多项式的推广","authors":"T. Miezaki, M. Oura, Tadashi Sakuma, Hidehiro Shinohara","doi":"10.3792/pjaa.95.111","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of the Tutte polynomials of genus $g$ and discuss some of its properties. We note that the Tutte polynomials of genus one are well-known Tutte polynomials. The Tutte polynomials are matroid invariants, and we claim that the Tutte polynomials of genus $g$ are also matroid invariants. The main result of this paper and the forthcoming paper declares that the Tutte polynomials of genus $g$ are complete matroid invariants.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A generalization of the Tutte polynomials\",\"authors\":\"T. Miezaki, M. Oura, Tadashi Sakuma, Hidehiro Shinohara\",\"doi\":\"10.3792/pjaa.95.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concept of the Tutte polynomials of genus $g$ and discuss some of its properties. We note that the Tutte polynomials of genus one are well-known Tutte polynomials. The Tutte polynomials are matroid invariants, and we claim that the Tutte polynomials of genus $g$ are also matroid invariants. The main result of this paper and the forthcoming paper declares that the Tutte polynomials of genus $g$ are complete matroid invariants.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.95.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.95.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we introduce the concept of the Tutte polynomials of genus $g$ and discuss some of its properties. We note that the Tutte polynomials of genus one are well-known Tutte polynomials. The Tutte polynomials are matroid invariants, and we claim that the Tutte polynomials of genus $g$ are also matroid invariants. The main result of this paper and the forthcoming paper declares that the Tutte polynomials of genus $g$ are complete matroid invariants.