图特多项式的推广

Pub Date : 2018-10-11 DOI:10.3792/pjaa.95.111
T. Miezaki, M. Oura, Tadashi Sakuma, Hidehiro Shinohara
{"title":"图特多项式的推广","authors":"T. Miezaki, M. Oura, Tadashi Sakuma, Hidehiro Shinohara","doi":"10.3792/pjaa.95.111","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of the Tutte polynomials of genus $g$ and discuss some of its properties. We note that the Tutte polynomials of genus one are well-known Tutte polynomials. The Tutte polynomials are matroid invariants, and we claim that the Tutte polynomials of genus $g$ are also matroid invariants. The main result of this paper and the forthcoming paper declares that the Tutte polynomials of genus $g$ are complete matroid invariants.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A generalization of the Tutte polynomials\",\"authors\":\"T. Miezaki, M. Oura, Tadashi Sakuma, Hidehiro Shinohara\",\"doi\":\"10.3792/pjaa.95.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concept of the Tutte polynomials of genus $g$ and discuss some of its properties. We note that the Tutte polynomials of genus one are well-known Tutte polynomials. The Tutte polynomials are matroid invariants, and we claim that the Tutte polynomials of genus $g$ are also matroid invariants. The main result of this paper and the forthcoming paper declares that the Tutte polynomials of genus $g$ are complete matroid invariants.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.95.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.95.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文引入了属$g$的Tutte多项式的概念,并讨论了它的一些性质。我们注意到,属1的图特多项式是众所周知的图特多项式。图特多项式是类矩阵不变量,并且我们证明格$g$的图特多项式也是类矩阵不变量。本文和即将发表的论文的主要结果表明,格$g$的Tutte多项式是完全的矩阵不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A generalization of the Tutte polynomials
In this paper, we introduce the concept of the Tutte polynomials of genus $g$ and discuss some of its properties. We note that the Tutte polynomials of genus one are well-known Tutte polynomials. The Tutte polynomials are matroid invariants, and we claim that the Tutte polynomials of genus $g$ are also matroid invariants. The main result of this paper and the forthcoming paper declares that the Tutte polynomials of genus $g$ are complete matroid invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信