{"title":"一类虚非协调有限元及其在泊松方程中的应用","authors":"H. El-Otmany","doi":"10.1504/ijmmno.2022.10045640","DOIUrl":null,"url":null,"abstract":"In this paper, we develop and analyze the virtual class of nonconforming Finite Element inspired from the classical Crouzeix-Raviart element in two and three-dimensions. We focus on Poisson’s equation for theoretical and numerical results. We show that the discrete problem is stable and the a priori error estimates are optimal. Two numerical tests are presented to demonstrate the theoretical results.","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":"10 1","pages":"176-190"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A virtual class of non-conforming finite elements and its applications to Poisson's equation\",\"authors\":\"H. El-Otmany\",\"doi\":\"10.1504/ijmmno.2022.10045640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop and analyze the virtual class of nonconforming Finite Element inspired from the classical Crouzeix-Raviart element in two and three-dimensions. We focus on Poisson’s equation for theoretical and numerical results. We show that the discrete problem is stable and the a priori error estimates are optimal. Two numerical tests are presented to demonstrate the theoretical results.\",\"PeriodicalId\":13553,\"journal\":{\"name\":\"Int. J. Math. Model. Numer. Optimisation\",\"volume\":\"10 1\",\"pages\":\"176-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Math. Model. Numer. Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmmno.2022.10045640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2022.10045640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A virtual class of non-conforming finite elements and its applications to Poisson's equation
In this paper, we develop and analyze the virtual class of nonconforming Finite Element inspired from the classical Crouzeix-Raviart element in two and three-dimensions. We focus on Poisson’s equation for theoretical and numerical results. We show that the discrete problem is stable and the a priori error estimates are optimal. Two numerical tests are presented to demonstrate the theoretical results.