一类虚非协调有限元及其在泊松方程中的应用

H. El-Otmany
{"title":"一类虚非协调有限元及其在泊松方程中的应用","authors":"H. El-Otmany","doi":"10.1504/ijmmno.2022.10045640","DOIUrl":null,"url":null,"abstract":"In this paper, we develop and analyze the virtual class of nonconforming Finite Element inspired from the classical Crouzeix-Raviart element in two and three-dimensions. We focus on Poisson’s equation for theoretical and numerical results. We show that the discrete problem is stable and the a priori error estimates are optimal. Two numerical tests are presented to demonstrate the theoretical results.","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":"10 1","pages":"176-190"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A virtual class of non-conforming finite elements and its applications to Poisson's equation\",\"authors\":\"H. El-Otmany\",\"doi\":\"10.1504/ijmmno.2022.10045640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop and analyze the virtual class of nonconforming Finite Element inspired from the classical Crouzeix-Raviart element in two and three-dimensions. We focus on Poisson’s equation for theoretical and numerical results. We show that the discrete problem is stable and the a priori error estimates are optimal. Two numerical tests are presented to demonstrate the theoretical results.\",\"PeriodicalId\":13553,\"journal\":{\"name\":\"Int. J. Math. Model. Numer. Optimisation\",\"volume\":\"10 1\",\"pages\":\"176-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Math. Model. Numer. Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmmno.2022.10045640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2022.10045640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从二维和三维的经典Crouzeix-Raviart单元出发,发展并分析了非协调有限元的虚拟类。我们着重讨论泊松方程的理论和数值结果。我们证明了离散问题是稳定的,并且先验误差估计是最优的。给出了两个数值试验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A virtual class of non-conforming finite elements and its applications to Poisson's equation
In this paper, we develop and analyze the virtual class of nonconforming Finite Element inspired from the classical Crouzeix-Raviart element in two and three-dimensions. We focus on Poisson’s equation for theoretical and numerical results. We show that the discrete problem is stable and the a priori error estimates are optimal. Two numerical tests are presented to demonstrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信