超椭圆Lefschetz纤维中奇异纤维的数量

Tulin Altunoz
{"title":"超椭圆Lefschetz纤维中奇异纤维的数量","authors":"Tulin Altunoz","doi":"10.2969/JMSJ/82988298","DOIUrl":null,"url":null,"abstract":"We consider complex surfaces, viewed as smooth $4$-dimensional manifolds, that admit hyperelliptic Lefschetz fibrations over the $2$-sphere. In this paper, we show that the minimal number of singular fibers of such fibrations is equal to $2g+4$ for even $g\\geq4$. For odd $g\\geq7$, we show that the number is greater than or equal to $2g+6$. Moreover, we discuss the minimal number of singular fibers in all hyperelliptic Lefschetz fibrations over the $2$-sphere as well.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The number of singular fibers in hyperelliptic Lefschetz fibrations\",\"authors\":\"Tulin Altunoz\",\"doi\":\"10.2969/JMSJ/82988298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider complex surfaces, viewed as smooth $4$-dimensional manifolds, that admit hyperelliptic Lefschetz fibrations over the $2$-sphere. In this paper, we show that the minimal number of singular fibers of such fibrations is equal to $2g+4$ for even $g\\\\geq4$. For odd $g\\\\geq7$, we show that the number is greater than or equal to $2g+6$. Moreover, we discuss the minimal number of singular fibers in all hyperelliptic Lefschetz fibrations over the $2$-sphere as well.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2969/JMSJ/82988298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/JMSJ/82988298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑复杂曲面,将其视为光滑的$4$维流形,它在$2$ -球面上允许超椭圆的Lefschetz振动。在本文中,我们证明了这种纤维的最小奇异纤维数等于$2g+4$对于偶数$g\geq4$。对于奇数$g\geq7$,我们证明该数大于等于$2g+6$。此外,我们还讨论了$2$ -球上所有超椭圆Lefschetz纤振中奇异纤维的最小数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of singular fibers in hyperelliptic Lefschetz fibrations
We consider complex surfaces, viewed as smooth $4$-dimensional manifolds, that admit hyperelliptic Lefschetz fibrations over the $2$-sphere. In this paper, we show that the minimal number of singular fibers of such fibrations is equal to $2g+4$ for even $g\geq4$. For odd $g\geq7$, we show that the number is greater than or equal to $2g+6$. Moreover, we discuss the minimal number of singular fibers in all hyperelliptic Lefschetz fibrations over the $2$-sphere as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信