光滑超曲面的度是多少?

IF 0.4 Q4 MATHEMATICS
A. Lerário, Michele Stecconi
{"title":"光滑超曲面的度是多少?","authors":"A. Lerário, Michele Stecconi","doi":"10.5427/jsing.2021.23l","DOIUrl":null,"url":null,"abstract":"Let $D$ be a disk in $\\mathbb{R}^n$ and $f\\in C^{r+2}(D, \\mathbb{R}^k)$. We deal with the problem of the algebraic approximation of the set $j^{r}f^{-1}(W)$ consisting of the set of points in the disk $D$ where the $r$-th jet extension of $f$ meets a given semialgebraic set $W\\subset J^{r}(D, \\mathbb{R}^k).$ Examples of sets arising in this way are the zero set of $f$, or the set of its critical points. \nUnder some transversality conditions, we prove that $f$ can be approximated with a polynomial map $p:D\\to \\mathbb{R}^k$ such that the corresponding singularity is diffeomorphic to the original one, and such that the degree of this polynomial map can be controlled by the $C^{r+2}$ data of $f$. More precisely, \\begin{equation} \\text{deg}(p)\\le O\\left(\\frac{\\|f\\|_{C^{r+2}(D, \\mathbb{R}^k)}}{\\mathrm{dist}_{C^{r+1}}(f, \\Delta_W)}\\right), \\end{equation} \nwhere $\\Delta_W$ is the set of maps whose $r$-th jet extension is not transverse to $W$. The estimate on the degree of $p$ implies an estimate on the Betti numbers of the singularity, however, using more refined tools, we prove independently a similar estimate, but involving only the $C^{r+1}$ data of $f$. \nThese results specialize to the case of zero sets of $f\\in C^{2}(D, \\mathbb{R})$, and give a way to approximate a smooth hypersurface defined by the equation $f=0$ with an algebraic one, with controlled degree (from which the title of the paper). In particular, we show that a compact hypersurface $Z\\subset D\\subset \\mathbb{R}^n$ with positive reach $\\rho(Z)>0$ is isotopic to the zero set in $D$ of a polynomial $p$ of degree \\begin{equation} \\text{deg}(p)\\leq c(D)\\cdot 2 \\left(1+\\frac{1}{\\rho(Z)}+\\frac{5n}{\\rho(Z)^2}\\right),\\end{equation} where $c(D)>0$ is a constant depending on the size of the disk $D$ (and in particular on the diameter of $Z$).","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"What is the degree of a smooth hypersurface?\",\"authors\":\"A. Lerário, Michele Stecconi\",\"doi\":\"10.5427/jsing.2021.23l\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ be a disk in $\\\\mathbb{R}^n$ and $f\\\\in C^{r+2}(D, \\\\mathbb{R}^k)$. We deal with the problem of the algebraic approximation of the set $j^{r}f^{-1}(W)$ consisting of the set of points in the disk $D$ where the $r$-th jet extension of $f$ meets a given semialgebraic set $W\\\\subset J^{r}(D, \\\\mathbb{R}^k).$ Examples of sets arising in this way are the zero set of $f$, or the set of its critical points. \\nUnder some transversality conditions, we prove that $f$ can be approximated with a polynomial map $p:D\\\\to \\\\mathbb{R}^k$ such that the corresponding singularity is diffeomorphic to the original one, and such that the degree of this polynomial map can be controlled by the $C^{r+2}$ data of $f$. More precisely, \\\\begin{equation} \\\\text{deg}(p)\\\\le O\\\\left(\\\\frac{\\\\|f\\\\|_{C^{r+2}(D, \\\\mathbb{R}^k)}}{\\\\mathrm{dist}_{C^{r+1}}(f, \\\\Delta_W)}\\\\right), \\\\end{equation} \\nwhere $\\\\Delta_W$ is the set of maps whose $r$-th jet extension is not transverse to $W$. The estimate on the degree of $p$ implies an estimate on the Betti numbers of the singularity, however, using more refined tools, we prove independently a similar estimate, but involving only the $C^{r+1}$ data of $f$. \\nThese results specialize to the case of zero sets of $f\\\\in C^{2}(D, \\\\mathbb{R})$, and give a way to approximate a smooth hypersurface defined by the equation $f=0$ with an algebraic one, with controlled degree (from which the title of the paper). In particular, we show that a compact hypersurface $Z\\\\subset D\\\\subset \\\\mathbb{R}^n$ with positive reach $\\\\rho(Z)>0$ is isotopic to the zero set in $D$ of a polynomial $p$ of degree \\\\begin{equation} \\\\text{deg}(p)\\\\leq c(D)\\\\cdot 2 \\\\left(1+\\\\frac{1}{\\\\rho(Z)}+\\\\frac{5n}{\\\\rho(Z)^2}\\\\right),\\\\end{equation} where $c(D)>0$ is a constant depending on the size of the disk $D$ (and in particular on the diameter of $Z$).\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2021.23l\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2021.23l","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设$D$为$\mathbb{R}^n$和$f\in C^{r+2}(D, \mathbb{R}^k)$中的一个磁盘。我们处理集合$j^{r}f^{-1}(W)$的代数逼近问题,该集合由磁盘$D$中点的集合组成,其中$f$的$r$ -射流扩展满足给定的半代数集合$W\subset J^{r}(D, \mathbb{R}^k).$以这种方式产生的集合的例子是$f$的零集或其临界点的集合。在某些横截性条件下,证明了$f$可以用一个多项式映射$p:D\to \mathbb{R}^k$来逼近,使得对应的奇异点与原奇异点是微同态的,并且该多项式映射的程度可以由$f$的$C^{r+2}$数据来控制。更准确地说,是\begin{equation} \text{deg}(p)\le O\left(\frac{\|f\|_{C^{r+2}(D, \mathbb{R}^k)}}{\mathrm{dist}_{C^{r+1}}(f, \Delta_W)}\right), \end{equation},其中$\Delta_W$是一组地图,其$r$ -射流扩展不横向于$W$。对$p$度的估计意味着对奇点的Betti数的估计,然而,使用更精细的工具,我们独立地证明了一个类似的估计,但只涉及$f$的$C^{r+1}$数据。这些结果专门研究了$f\in C^{2}(D, \mathbb{R})$的零集情况,并给出了一种近似由方程$f=0$定义的光滑超曲面的方法,该方法具有控制度(本文的标题由此而来)。特别是,我们证明了具有正到达$\rho(Z)>0$的紧致超曲面$Z\subset D\subset \mathbb{R}^n$与次为\begin{equation} \text{deg}(p)\leq c(D)\cdot 2 \left(1+\frac{1}{\rho(Z)}+\frac{5n}{\rho(Z)^2}\right),\end{equation}的多项式$p$在$D$中的零集是同位素的,其中$c(D)>0$是一个常数,取决于磁盘$D$的大小(特别是$Z$的直径)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What is the degree of a smooth hypersurface?
Let $D$ be a disk in $\mathbb{R}^n$ and $f\in C^{r+2}(D, \mathbb{R}^k)$. We deal with the problem of the algebraic approximation of the set $j^{r}f^{-1}(W)$ consisting of the set of points in the disk $D$ where the $r$-th jet extension of $f$ meets a given semialgebraic set $W\subset J^{r}(D, \mathbb{R}^k).$ Examples of sets arising in this way are the zero set of $f$, or the set of its critical points. Under some transversality conditions, we prove that $f$ can be approximated with a polynomial map $p:D\to \mathbb{R}^k$ such that the corresponding singularity is diffeomorphic to the original one, and such that the degree of this polynomial map can be controlled by the $C^{r+2}$ data of $f$. More precisely, \begin{equation} \text{deg}(p)\le O\left(\frac{\|f\|_{C^{r+2}(D, \mathbb{R}^k)}}{\mathrm{dist}_{C^{r+1}}(f, \Delta_W)}\right), \end{equation} where $\Delta_W$ is the set of maps whose $r$-th jet extension is not transverse to $W$. The estimate on the degree of $p$ implies an estimate on the Betti numbers of the singularity, however, using more refined tools, we prove independently a similar estimate, but involving only the $C^{r+1}$ data of $f$. These results specialize to the case of zero sets of $f\in C^{2}(D, \mathbb{R})$, and give a way to approximate a smooth hypersurface defined by the equation $f=0$ with an algebraic one, with controlled degree (from which the title of the paper). In particular, we show that a compact hypersurface $Z\subset D\subset \mathbb{R}^n$ with positive reach $\rho(Z)>0$ is isotopic to the zero set in $D$ of a polynomial $p$ of degree \begin{equation} \text{deg}(p)\leq c(D)\cdot 2 \left(1+\frac{1}{\rho(Z)}+\frac{5n}{\rho(Z)^2}\right),\end{equation} where $c(D)>0$ is a constant depending on the size of the disk $D$ (and in particular on the diameter of $Z$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信