基于改进粒子群算法的BP神经网络在高炉温度预测中的应用

Hongjun Wang, Dexiong Li, Zhuoqun Zhao, Hui-juan Qi, Lina Liu
{"title":"基于改进粒子群算法的BP神经网络在高炉温度预测中的应用","authors":"Hongjun Wang, Dexiong Li, Zhuoqun Zhao, Hui-juan Qi, Lina Liu","doi":"10.1109/ICECENG.2011.6057958","DOIUrl":null,"url":null,"abstract":"The BP network has the disadvantages such as low learning efficiency, low speed of convergence, easily falling into the local minimum state, poor ability to adapt, ect. For PSO algorithm, it is fast for convergence, especially at the initial stage, simple for the computing, and is easy to implement. Compared with the genetic algorithms, it does have not the complex operations of hybrid codecs, mutation, so it is a good optimization algorithm. However, PSO algorithm also has some shortcomings it is more and more slow for convergence rate at the late evolution of the algorithm. In this paper, a new BP Neural Network based on improved Particle Swarm Optimization (PSO) is proposed. The convergence speed of this algorithm and the capacity of searching global extremum is increased through adjusting the adaptive capacity of learning factor. The simulation results illustrate that the improved PSO is superior to the standard BP algorithm and particle swarm optimization.","PeriodicalId":6336,"journal":{"name":"2011 International Conference on Electrical and Control Engineering","volume":"26 1","pages":"2626-2629"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The application of BP Neural Network based on improved PSO in BF temperature forecast\",\"authors\":\"Hongjun Wang, Dexiong Li, Zhuoqun Zhao, Hui-juan Qi, Lina Liu\",\"doi\":\"10.1109/ICECENG.2011.6057958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BP network has the disadvantages such as low learning efficiency, low speed of convergence, easily falling into the local minimum state, poor ability to adapt, ect. For PSO algorithm, it is fast for convergence, especially at the initial stage, simple for the computing, and is easy to implement. Compared with the genetic algorithms, it does have not the complex operations of hybrid codecs, mutation, so it is a good optimization algorithm. However, PSO algorithm also has some shortcomings it is more and more slow for convergence rate at the late evolution of the algorithm. In this paper, a new BP Neural Network based on improved Particle Swarm Optimization (PSO) is proposed. The convergence speed of this algorithm and the capacity of searching global extremum is increased through adjusting the adaptive capacity of learning factor. The simulation results illustrate that the improved PSO is superior to the standard BP algorithm and particle swarm optimization.\",\"PeriodicalId\":6336,\"journal\":{\"name\":\"2011 International Conference on Electrical and Control Engineering\",\"volume\":\"26 1\",\"pages\":\"2626-2629\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Electrical and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECENG.2011.6057958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Electrical and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECENG.2011.6057958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

BP网络存在学习效率低、收敛速度慢、易陷入局部最小状态、适应能力差等缺点。粒子群算法具有收敛速度快,特别是在初始阶段,计算简单,易于实现等优点。与遗传算法相比,它没有混合编解码器、变异等复杂的操作,是一种很好的优化算法。然而,粒子群算法也存在一些不足,在算法发展的后期,收敛速度越来越慢。提出了一种基于改进粒子群算法的BP神经网络。通过调整学习因子的自适应能力,提高了算法的收敛速度和搜索全局极值的能力。仿真结果表明,改进的粒子群算法优于标准BP算法和粒子群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of BP Neural Network based on improved PSO in BF temperature forecast
The BP network has the disadvantages such as low learning efficiency, low speed of convergence, easily falling into the local minimum state, poor ability to adapt, ect. For PSO algorithm, it is fast for convergence, especially at the initial stage, simple for the computing, and is easy to implement. Compared with the genetic algorithms, it does have not the complex operations of hybrid codecs, mutation, so it is a good optimization algorithm. However, PSO algorithm also has some shortcomings it is more and more slow for convergence rate at the late evolution of the algorithm. In this paper, a new BP Neural Network based on improved Particle Swarm Optimization (PSO) is proposed. The convergence speed of this algorithm and the capacity of searching global extremum is increased through adjusting the adaptive capacity of learning factor. The simulation results illustrate that the improved PSO is superior to the standard BP algorithm and particle swarm optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信