Eugenia O'Reilly Regueiro, José Emanuel Rodríguez-Fitta
{"title":"具有积作用的标志传递点原自同构群的对称设计的参数化","authors":"Eugenia O'Reilly Regueiro, José Emanuel Rodríguez-Fitta","doi":"10.26493/1855-3974.2507.a1d","DOIUrl":null,"url":null,"abstract":"We study (v, k, λ)-symmetric designs having a flag-transitive, point-primitive automorphism group, with v = m and (k, λ) = t > 1, and prove that if D is such a design with m even admitting a flag-transitive, point-primitive automorphism group G, then either: (1) D is a design with parameters ( (2t+ s− 1), 2t −(2−s)t s , t−t s2 ) with s ≥ 1 odd, or (2) G does not have a non-trivial product action. We observe that the parameters in (1), when s = 1, correspond to Menon designs. We also prove that if D is a (v, k, λ)-symmetric design with a flag-transitive, pointprimitive automorphism group of product action type with v = m and l ≥ 2 then the complement of D does not admit a flag-transitive automorphism group.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parametrisation for symmetric designs admitting a flag-transitive, point-primitive automorphism group with a product action\",\"authors\":\"Eugenia O'Reilly Regueiro, José Emanuel Rodríguez-Fitta\",\"doi\":\"10.26493/1855-3974.2507.a1d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study (v, k, λ)-symmetric designs having a flag-transitive, point-primitive automorphism group, with v = m and (k, λ) = t > 1, and prove that if D is such a design with m even admitting a flag-transitive, point-primitive automorphism group G, then either: (1) D is a design with parameters ( (2t+ s− 1), 2t −(2−s)t s , t−t s2 ) with s ≥ 1 odd, or (2) G does not have a non-trivial product action. We observe that the parameters in (1), when s = 1, correspond to Menon designs. We also prove that if D is a (v, k, λ)-symmetric design with a flag-transitive, pointprimitive automorphism group of product action type with v = m and l ≥ 2 then the complement of D does not admit a flag-transitive automorphism group.\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2507.a1d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2507.a1d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究(v, k,λ)对称设计flag-transitive, point-primitive自同构群,与v = m和(k,λ)= t > 1,证明如果D是这样的设计和m甚至承认flag-transitive point-primitive自同构群G,然后要么:(1)D是一个设计参数((2 t + s−1),2 t−(2−(s) t s、t−s2)和s≥1奇怪,或(2)G产品没有一个非平凡的行动。我们观察到,当s = 1时,(1)中的参数对应于Menon设计。我们还证明了如果D是一个(v, k, λ)-对称设计,具有v = m且l≥2的积作用型标志-传递点基自同构群,则D的补不存在标志-传递自同构群。
A parametrisation for symmetric designs admitting a flag-transitive, point-primitive automorphism group with a product action
We study (v, k, λ)-symmetric designs having a flag-transitive, point-primitive automorphism group, with v = m and (k, λ) = t > 1, and prove that if D is such a design with m even admitting a flag-transitive, point-primitive automorphism group G, then either: (1) D is a design with parameters ( (2t+ s− 1), 2t −(2−s)t s , t−t s2 ) with s ≥ 1 odd, or (2) G does not have a non-trivial product action. We observe that the parameters in (1), when s = 1, correspond to Menon designs. We also prove that if D is a (v, k, λ)-symmetric design with a flag-transitive, pointprimitive automorphism group of product action type with v = m and l ≥ 2 then the complement of D does not admit a flag-transitive automorphism group.