{"title":"利用多数排序模糊聚类提高软件故障预测的准确性","authors":"Golnoush Abaei, A. Selamat","doi":"10.4018/ijsi.2014100105","DOIUrl":null,"url":null,"abstract":"Despite proposing many software fault prediction models, this area has yet to be explored as still there is a room for stable and consistent model with better performance. In this paper, a new method is proposed to increase the accuracy of fault prediction based on the notion of fuzzy clustering and majority ranking. The authors investigated the effect of irrelevant and inconsistent modules on software fault prediction and tried to decrease it by designing a new framework, in which the entire project modules are clustered. The obtained results showed that fuzzy clustering could decrease the negative effect of irrelevant modules on prediction performance. Eight data sets from NASA and Turkish white-goods software is employed to evaluate our model. Performance evaluation in terms of false positive rate, false negative rate, and overall error showed the superiority of our model compared to other predicting models. The authors proposed majority ranking fuzzy clustering approach showed between 3% to 18% and 1% to 4% improvement in false negative rate and overall error, respectively, compared with other available proposed models (ACF and ACN) in more than half of the testing cases. According to the results, our systems can be used to guide testing effort by identifying fault prone modules to improve the quality of software development and software testing in a limited time and budget.","PeriodicalId":55938,"journal":{"name":"International Journal of Software Innovation","volume":"25 1","pages":"179-193"},"PeriodicalIF":0.6000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Increasing the Accuracy of Software Fault Prediction using Majority Ranking Fuzzy Clustering\",\"authors\":\"Golnoush Abaei, A. Selamat\",\"doi\":\"10.4018/ijsi.2014100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite proposing many software fault prediction models, this area has yet to be explored as still there is a room for stable and consistent model with better performance. In this paper, a new method is proposed to increase the accuracy of fault prediction based on the notion of fuzzy clustering and majority ranking. The authors investigated the effect of irrelevant and inconsistent modules on software fault prediction and tried to decrease it by designing a new framework, in which the entire project modules are clustered. The obtained results showed that fuzzy clustering could decrease the negative effect of irrelevant modules on prediction performance. Eight data sets from NASA and Turkish white-goods software is employed to evaluate our model. Performance evaluation in terms of false positive rate, false negative rate, and overall error showed the superiority of our model compared to other predicting models. The authors proposed majority ranking fuzzy clustering approach showed between 3% to 18% and 1% to 4% improvement in false negative rate and overall error, respectively, compared with other available proposed models (ACF and ACN) in more than half of the testing cases. According to the results, our systems can be used to guide testing effort by identifying fault prone modules to improve the quality of software development and software testing in a limited time and budget.\",\"PeriodicalId\":55938,\"journal\":{\"name\":\"International Journal of Software Innovation\",\"volume\":\"25 1\",\"pages\":\"179-193\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Software Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsi.2014100105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.2014100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Increasing the Accuracy of Software Fault Prediction using Majority Ranking Fuzzy Clustering
Despite proposing many software fault prediction models, this area has yet to be explored as still there is a room for stable and consistent model with better performance. In this paper, a new method is proposed to increase the accuracy of fault prediction based on the notion of fuzzy clustering and majority ranking. The authors investigated the effect of irrelevant and inconsistent modules on software fault prediction and tried to decrease it by designing a new framework, in which the entire project modules are clustered. The obtained results showed that fuzzy clustering could decrease the negative effect of irrelevant modules on prediction performance. Eight data sets from NASA and Turkish white-goods software is employed to evaluate our model. Performance evaluation in terms of false positive rate, false negative rate, and overall error showed the superiority of our model compared to other predicting models. The authors proposed majority ranking fuzzy clustering approach showed between 3% to 18% and 1% to 4% improvement in false negative rate and overall error, respectively, compared with other available proposed models (ACF and ACN) in more than half of the testing cases. According to the results, our systems can be used to guide testing effort by identifying fault prone modules to improve the quality of software development and software testing in a limited time and budget.
期刊介绍:
The International Journal of Software Innovation (IJSI) covers state-of-the-art research and development in all aspects of evolutionary and revolutionary ideas pertaining to software systems and their development. The journal publishes original papers on both theory and practice that reflect and accommodate the fast-changing nature of daily life. Topics of interest include not only application-independent software systems, but also application-specific software systems like healthcare, education, energy, and entertainment software systems, as well as techniques and methodologies for modeling, developing, validating, maintaining, and reengineering software systems and their environments.