{"title":"粒子治疗回旋加速器。","authors":"J. Schippers","doi":"10.23730/CYRSP-2017-001.165","DOIUrl":null,"url":null,"abstract":"In particle therapy with protons a cyclotron is one of the most used particle accelerators. Here it will be explained how a cyclotron works, some beam dynamics aspects, its major subsystems, as well as the advantages and disadvantages of a cyclotron for this application are discussed. The difference between the standard isochronous cyclotron and the synchrocyclotron is explained. New developments are presented and especially those which aim to reduce the size of the accelerator.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":"185 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cyclotrons for Particle Therapy.\",\"authors\":\"J. Schippers\",\"doi\":\"10.23730/CYRSP-2017-001.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In particle therapy with protons a cyclotron is one of the most used particle accelerators. Here it will be explained how a cyclotron works, some beam dynamics aspects, its major subsystems, as well as the advantages and disadvantages of a cyclotron for this application are discussed. The difference between the standard isochronous cyclotron and the synchrocyclotron is explained. New developments are presented and especially those which aim to reduce the size of the accelerator.\",\"PeriodicalId\":8462,\"journal\":{\"name\":\"arXiv: Medical Physics\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23730/CYRSP-2017-001.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23730/CYRSP-2017-001.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In particle therapy with protons a cyclotron is one of the most used particle accelerators. Here it will be explained how a cyclotron works, some beam dynamics aspects, its major subsystems, as well as the advantages and disadvantages of a cyclotron for this application are discussed. The difference between the standard isochronous cyclotron and the synchrocyclotron is explained. New developments are presented and especially those which aim to reduce the size of the accelerator.