用于自主无线传感器节点的高效、厘米级和低速气流驱动收割机的建模和表征

P. Gasnier, B. Alessandri, T. Fayer, N. Garraud, E. Pauliac-Vaujour, S. Boisseau
{"title":"用于自主无线传感器节点的高效、厘米级和低速气流驱动收割机的建模和表征","authors":"P. Gasnier, B. Alessandri, T. Fayer, N. Garraud, E. Pauliac-Vaujour, S. Boisseau","doi":"10.1109/PowerMEMS49317.2019.41031600279","DOIUrl":null,"url":null,"abstract":"This paper reports the design, simulation, fabrication and performances of a centimeter-scale $(\\emptyset=35\\mathrm{m}\\mathrm{m})$ airflow-driven harvester for autonomous Wireless Sensor Nodes (WSN). We present a model-based design tool implemented in Matlab-Simulink, which takes both computational fluid dynamics and electromagnetic fmite element simulations as inputs and we compare the simulation results with measurements for various air velocities. The harvester has a cut-in speed of 2 $\\mathrm{m}.\\mathrm{s}^{-1}$ and it is particularly efficient in the low airflow environments since its end-to-end efficiency ranges from 10.5% to 23.9% and its maximum output power from 200 $\\mu \\mathrm{W}\\mathrm{t}\\mathrm{o}3.7\\mathrm{m}\\mathrm{W}$ at 1.5 $\\mathrm{m}.\\mathrm{s}^{-1}$ and 3 $\\mathrm{m}.\\mathrm{s}^{-1}$ respectively. The propeller alone has a mechanical power coefficient ranging from 19.1% to 34% at 1.5 $\\mathrm{m}.\\mathrm{s}^{-1}$ and 3 $\\mathrm{m}.\\mathrm{s}^{-1}$ respectively. Furthermore, in the cm-scale and low airflow velocity ranges, the proposed harvester without shroud outperforms the state of the art in terms of power density and end-to-end efficiency (23.9% at 3 $\\mathrm{m}.\\mathrm{s}^{-1}$, 28% at 5 $\\mathrm{m}.\\mathrm{s}^{-1}$) and it still exhibits one of the highest performances with its shroud.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"17 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling and Characterization of a High-Efficiency, Cm-Scale and Low Velocity Airflow-Driven Harvester for Autonomous Wireless Sensor Nodes\",\"authors\":\"P. Gasnier, B. Alessandri, T. Fayer, N. Garraud, E. Pauliac-Vaujour, S. Boisseau\",\"doi\":\"10.1109/PowerMEMS49317.2019.41031600279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the design, simulation, fabrication and performances of a centimeter-scale $(\\\\emptyset=35\\\\mathrm{m}\\\\mathrm{m})$ airflow-driven harvester for autonomous Wireless Sensor Nodes (WSN). We present a model-based design tool implemented in Matlab-Simulink, which takes both computational fluid dynamics and electromagnetic fmite element simulations as inputs and we compare the simulation results with measurements for various air velocities. The harvester has a cut-in speed of 2 $\\\\mathrm{m}.\\\\mathrm{s}^{-1}$ and it is particularly efficient in the low airflow environments since its end-to-end efficiency ranges from 10.5% to 23.9% and its maximum output power from 200 $\\\\mu \\\\mathrm{W}\\\\mathrm{t}\\\\mathrm{o}3.7\\\\mathrm{m}\\\\mathrm{W}$ at 1.5 $\\\\mathrm{m}.\\\\mathrm{s}^{-1}$ and 3 $\\\\mathrm{m}.\\\\mathrm{s}^{-1}$ respectively. The propeller alone has a mechanical power coefficient ranging from 19.1% to 34% at 1.5 $\\\\mathrm{m}.\\\\mathrm{s}^{-1}$ and 3 $\\\\mathrm{m}.\\\\mathrm{s}^{-1}$ respectively. Furthermore, in the cm-scale and low airflow velocity ranges, the proposed harvester without shroud outperforms the state of the art in terms of power density and end-to-end efficiency (23.9% at 3 $\\\\mathrm{m}.\\\\mathrm{s}^{-1}$, 28% at 5 $\\\\mathrm{m}.\\\\mathrm{s}^{-1}$) and it still exhibits one of the highest performances with its shroud.\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"17 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS49317.2019.41031600279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.41031600279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报道了用于自主无线传感器节点(WSN)的厘米级$(\emptyset=35\mathrm{m}\mathrm{m})$气流驱动采集器的设计、仿真、制造和性能。我们提出了一个基于模型的设计工具,在Matlab-Simulink中实现,它将计算流体动力学和电磁有限元模拟作为输入,并将模拟结果与不同空气速度的测量结果进行了比较。收割机的切割速度为2 $\ mathm {m}。\ mathm {s}^{-1}$在低气流环境下特别高效,因为它的端到端效率范围从10.5%到23.9%,其最大输出功率从200 $\mu \ mathm {W}\ mathm {t}\ mathm {o}3.7\ mathm {m}\ mathm {W}$到1.5 $\ mathm {m} $。\ mathm {s}^{-1}$和3 $\ mathm {m}。美元\ mathrm{年代}^{1}。螺旋桨单独具有在1.5 $\ mathm {m}时从19.1%到34%的机械功率系数。\ mathm {s}^{-1}$和3 $\ mathm {m}。美元\ mathrm{年代}^{1}。此外,在厘米尺度和低气流速度范围内,所提出的无护罩收割机在功率密度和端到端效率方面优于目前的技术水平(在3 $\math {m}时为23.9%)。\mathrm{s}^{-1}$,在5 $\mathrm{m}.\mathrm{s}^{-1}$时的28%),它仍然表现出最高的性能之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling and Characterization of a High-Efficiency, Cm-Scale and Low Velocity Airflow-Driven Harvester for Autonomous Wireless Sensor Nodes
This paper reports the design, simulation, fabrication and performances of a centimeter-scale $(\emptyset=35\mathrm{m}\mathrm{m})$ airflow-driven harvester for autonomous Wireless Sensor Nodes (WSN). We present a model-based design tool implemented in Matlab-Simulink, which takes both computational fluid dynamics and electromagnetic fmite element simulations as inputs and we compare the simulation results with measurements for various air velocities. The harvester has a cut-in speed of 2 $\mathrm{m}.\mathrm{s}^{-1}$ and it is particularly efficient in the low airflow environments since its end-to-end efficiency ranges from 10.5% to 23.9% and its maximum output power from 200 $\mu \mathrm{W}\mathrm{t}\mathrm{o}3.7\mathrm{m}\mathrm{W}$ at 1.5 $\mathrm{m}.\mathrm{s}^{-1}$ and 3 $\mathrm{m}.\mathrm{s}^{-1}$ respectively. The propeller alone has a mechanical power coefficient ranging from 19.1% to 34% at 1.5 $\mathrm{m}.\mathrm{s}^{-1}$ and 3 $\mathrm{m}.\mathrm{s}^{-1}$ respectively. Furthermore, in the cm-scale and low airflow velocity ranges, the proposed harvester without shroud outperforms the state of the art in terms of power density and end-to-end efficiency (23.9% at 3 $\mathrm{m}.\mathrm{s}^{-1}$, 28% at 5 $\mathrm{m}.\mathrm{s}^{-1}$) and it still exhibits one of the highest performances with its shroud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信