基于深度卷积神经网络的数据增强二维耳识别有效模型

Ravishankar Mehta, K. K. Singh
{"title":"基于深度卷积神经网络的数据增强二维耳识别有效模型","authors":"Ravishankar Mehta, K. K. Singh","doi":"10.1080/13682199.2023.2206763","DOIUrl":null,"url":null,"abstract":"In the pandemic of COVID-19, identifying a person from their face became difficult due to wearing of mask. In regard to the given circumstances, the authors have remarkably put effort on identifying a person using 2D ear images based on deep convolutional neural network (CNNs). They investigated the challenges of limited data and varying environmental conditions in this regards. To deal with such challenges, the authors developed an augmentation-based light-weight CNN model using CPU enabled machine so that it can be ported into embedded devices. While applying data augmentation technique to enhance the quality and size of training dataset, the authors analysed and discussed the different augmentation parameters (rotation, flipping, zooming, and fill mode) that are effective for generating the large number of sample images of different variability. The model works well on constrained and unconstrained ear datasets and achieves good recognition accuracy. It also reduces the problem of overfitting. [ FROM AUTHOR] Copyright of Imaging Science Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep convolutional neural network-based effective model for 2D ear recognition using data augmentation\",\"authors\":\"Ravishankar Mehta, K. K. Singh\",\"doi\":\"10.1080/13682199.2023.2206763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the pandemic of COVID-19, identifying a person from their face became difficult due to wearing of mask. In regard to the given circumstances, the authors have remarkably put effort on identifying a person using 2D ear images based on deep convolutional neural network (CNNs). They investigated the challenges of limited data and varying environmental conditions in this regards. To deal with such challenges, the authors developed an augmentation-based light-weight CNN model using CPU enabled machine so that it can be ported into embedded devices. While applying data augmentation technique to enhance the quality and size of training dataset, the authors analysed and discussed the different augmentation parameters (rotation, flipping, zooming, and fill mode) that are effective for generating the large number of sample images of different variability. The model works well on constrained and unconstrained ear datasets and achieves good recognition accuracy. It also reduces the problem of overfitting. [ FROM AUTHOR] Copyright of Imaging Science Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)\",\"PeriodicalId\":22456,\"journal\":{\"name\":\"The Imaging Science Journal\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Imaging Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13682199.2023.2206763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Imaging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13682199.2023.2206763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在2019冠状病毒病大流行期间,由于戴口罩,从面部识别一个人变得困难。考虑到给定的情况,作者在使用基于深度卷积神经网络(cnn)的二维耳朵图像识别人的问题上付出了显著的努力。他们调查了这方面有限的数据和变化的环境条件所带来的挑战。为了应对这些挑战,作者开发了一种基于增强的轻量级CNN模型,使用启用CPU的机器,以便将其移植到嵌入式设备中。在应用数据增强技术提高训练数据集的质量和规模的同时,作者分析和讨论了不同的增强参数(旋转、翻转、缩放和填充模式)对生成大量不同可变性的样本图像的效果。该模型对有约束和无约束的耳朵数据集都能很好地识别,并取得了较好的识别精度。它还减少了过拟合的问题。image Science Journal版权归Taylor & Francis Ltd所有,未经版权所有者明确书面许可,不得将其内容复制或通过电子邮件发送到多个网站或发布到listserv。但是,用户可以打印、下载或通过电子邮件发送文章供个人使用。这可以删节。对副本的准确性不作任何保证。用户应参阅原始出版版本的材料的完整。(版权适用于所有人。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep convolutional neural network-based effective model for 2D ear recognition using data augmentation
In the pandemic of COVID-19, identifying a person from their face became difficult due to wearing of mask. In regard to the given circumstances, the authors have remarkably put effort on identifying a person using 2D ear images based on deep convolutional neural network (CNNs). They investigated the challenges of limited data and varying environmental conditions in this regards. To deal with such challenges, the authors developed an augmentation-based light-weight CNN model using CPU enabled machine so that it can be ported into embedded devices. While applying data augmentation technique to enhance the quality and size of training dataset, the authors analysed and discussed the different augmentation parameters (rotation, flipping, zooming, and fill mode) that are effective for generating the large number of sample images of different variability. The model works well on constrained and unconstrained ear datasets and achieves good recognition accuracy. It also reduces the problem of overfitting. [ FROM AUTHOR] Copyright of Imaging Science Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信