{"title":"通用自动变速和变道行为的进化方法","authors":"C. Hoel, M. Wahde, Krister Wolff","doi":"10.1109/ICMLA.2017.00-70","DOIUrl":null,"url":null,"abstract":"This paper introduces a method for automatically training a general-purpose driver model, applied to the case of a truck-trailer combination. A genetic algorithm is used to optimize a structure of rules and actions, and their parameters, to achieve the desired driving behavior. The training is carried out in a simulated environment, using a two-stage process. The method is then applied to a highway driving case, where it is shown that it generates a model that matches or surpasses the performance of a commonly used reference model. Furthermore, the generality of the model is demonstrated by applying it to an overtaking situation on a rural road with oncoming traffic.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"4 1","pages":"743-748"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Evolutionary Approach to General-Purpose Automated Speed and Lane Change Behavior\",\"authors\":\"C. Hoel, M. Wahde, Krister Wolff\",\"doi\":\"10.1109/ICMLA.2017.00-70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a method for automatically training a general-purpose driver model, applied to the case of a truck-trailer combination. A genetic algorithm is used to optimize a structure of rules and actions, and their parameters, to achieve the desired driving behavior. The training is carried out in a simulated environment, using a two-stage process. The method is then applied to a highway driving case, where it is shown that it generates a model that matches or surpasses the performance of a commonly used reference model. Furthermore, the generality of the model is demonstrated by applying it to an overtaking situation on a rural road with oncoming traffic.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"4 1\",\"pages\":\"743-748\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.00-70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Evolutionary Approach to General-Purpose Automated Speed and Lane Change Behavior
This paper introduces a method for automatically training a general-purpose driver model, applied to the case of a truck-trailer combination. A genetic algorithm is used to optimize a structure of rules and actions, and their parameters, to achieve the desired driving behavior. The training is carried out in a simulated environment, using a two-stage process. The method is then applied to a highway driving case, where it is shown that it generates a model that matches or surpasses the performance of a commonly used reference model. Furthermore, the generality of the model is demonstrated by applying it to an overtaking situation on a rural road with oncoming traffic.