真理发现调查

Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, Jiawei Han
{"title":"真理发现调查","authors":"Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, Jiawei Han","doi":"10.1145/2897350.2897352","DOIUrl":null,"url":null,"abstract":"Thanks to information explosion, data for the objects of interest can be collected from increasingly more sources. However, for the same object, there usually exist conflicts among the collected multi-source information. To tackle this challenge, truth discovery, which integrates multi-source noisy information by estimating the reliability of each source, has emerged as a hot topic. Several truth discovery methods have been proposed for various scenarios, and they have been successfully applied in diverse application domains. In this survey, we focus on providing a comprehensive overview of truth discovery methods, and summarizing them from different aspects. We also discuss some future directions of truth discovery research. We hope that this survey will promote a better understanding of the current progress on truth discovery, and offer some guidelines on how to apply these approaches in application domains.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"1 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"382","resultStr":"{\"title\":\"A Survey on Truth Discovery\",\"authors\":\"Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, Jiawei Han\",\"doi\":\"10.1145/2897350.2897352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to information explosion, data for the objects of interest can be collected from increasingly more sources. However, for the same object, there usually exist conflicts among the collected multi-source information. To tackle this challenge, truth discovery, which integrates multi-source noisy information by estimating the reliability of each source, has emerged as a hot topic. Several truth discovery methods have been proposed for various scenarios, and they have been successfully applied in diverse application domains. In this survey, we focus on providing a comprehensive overview of truth discovery methods, and summarizing them from different aspects. We also discuss some future directions of truth discovery research. We hope that this survey will promote a better understanding of the current progress on truth discovery, and offer some guidelines on how to apply these approaches in application domains.\",\"PeriodicalId\":90050,\"journal\":{\"name\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"volume\":\"1 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"382\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897350.2897352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897350.2897352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 382

摘要

由于信息爆炸,有关感兴趣对象的数据可以从越来越多的来源收集。然而,对于同一目标,采集到的多源信息往往存在冲突。为了解决这一挑战,通过估计每个源的可靠性来整合多源噪声信息的真值发现成为一个热门话题。针对不同的场景提出了几种真值发现方法,并成功地应用于不同的应用领域。在本次调查中,我们重点对真相发现方法进行了全面的概述,并从不同的方面进行了总结。我们还讨论了未来真理发现研究的一些方向。我们希望这一调查将促进对当前真理发现进展的更好理解,并为如何将这些方法应用于应用领域提供一些指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Truth Discovery
Thanks to information explosion, data for the objects of interest can be collected from increasingly more sources. However, for the same object, there usually exist conflicts among the collected multi-source information. To tackle this challenge, truth discovery, which integrates multi-source noisy information by estimating the reliability of each source, has emerged as a hot topic. Several truth discovery methods have been proposed for various scenarios, and they have been successfully applied in diverse application domains. In this survey, we focus on providing a comprehensive overview of truth discovery methods, and summarizing them from different aspects. We also discuss some future directions of truth discovery research. We hope that this survey will promote a better understanding of the current progress on truth discovery, and offer some guidelines on how to apply these approaches in application domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信