约束状态空间实现的神经网络方法

J.S. Kim, H. Singh
{"title":"约束状态空间实现的神经网络方法","authors":"J.S. Kim, H. Singh","doi":"10.1109/MWSCAS.1991.252101","DOIUrl":null,"url":null,"abstract":"Using the neural network approach for determination of the constrained state-space realization from Markov parameters of the transfer function is proposed. The neural network approach is suggested for determining realization A, B, and C in such a manner that there are some constraints on some of the elements of A, B, and C. Such constraint cases cannot be achieved using conventional algorithms. A single-layer neural network and heuristic random optimization algorithm are used for constrained state-space realization.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"1 1","pages":"553-556 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural net approach for constrained state-space realization\",\"authors\":\"J.S. Kim, H. Singh\",\"doi\":\"10.1109/MWSCAS.1991.252101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the neural network approach for determination of the constrained state-space realization from Markov parameters of the transfer function is proposed. The neural network approach is suggested for determining realization A, B, and C in such a manner that there are some constraints on some of the elements of A, B, and C. Such constraint cases cannot be achieved using conventional algorithms. A single-layer neural network and heuristic random optimization algorithm are used for constrained state-space realization.<<ETX>>\",\"PeriodicalId\":6453,\"journal\":{\"name\":\"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems\",\"volume\":\"1 1\",\"pages\":\"553-556 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1991.252101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.252101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出利用神经网络方法从传递函数的马尔可夫参数确定约束状态空间实现。建议使用神经网络方法来确定实现A、B和C,在这种方式下,A、B和C的某些元素存在一些约束。这种约束情况无法使用传统算法实现。采用单层神经网络和启发式随机优化算法实现约束状态空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural net approach for constrained state-space realization
Using the neural network approach for determination of the constrained state-space realization from Markov parameters of the transfer function is proposed. The neural network approach is suggested for determining realization A, B, and C in such a manner that there are some constraints on some of the elements of A, B, and C. Such constraint cases cannot be achieved using conventional algorithms. A single-layer neural network and heuristic random optimization algorithm are used for constrained state-space realization.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信