时间均匀白噪声驱动下的Wick随机热方程解的空间导数的Feynman-Kac方法

Pub Date : 2021-12-21 DOI:10.1142/s0219025723500017
Hyun-Jung Kim, Ramiro Scorolli
{"title":"时间均匀白噪声驱动下的Wick随机热方程解的空间导数的Feynman-Kac方法","authors":"Hyun-Jung Kim, Ramiro Scorolli","doi":"10.1142/s0219025723500017","DOIUrl":null,"url":null,"abstract":"We consider the (unique) mild solution $u(t,x)$ of a 1-dimensional stochastic heat equation on $[0,T]\\times\\mathbb R$ driven by time-homogeneous white noise in the Wick-Skorokhod sense. The main result of this paper is the computation of the spatial derivative of $u(t,x)$, denoted by $\\partial_x u(t,x)$, and its representation as a Feynman-Kac type closed form. The chaos expansion of $\\partial_x u(t,x)$ makes it possible to find its (optimal) H\\\"older regularity especially in space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Feynman-Kac approach for the spatial derivative of the solution to the Wick stochastic heat equation driven by time homogeneous white noise\",\"authors\":\"Hyun-Jung Kim, Ramiro Scorolli\",\"doi\":\"10.1142/s0219025723500017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the (unique) mild solution $u(t,x)$ of a 1-dimensional stochastic heat equation on $[0,T]\\\\times\\\\mathbb R$ driven by time-homogeneous white noise in the Wick-Skorokhod sense. The main result of this paper is the computation of the spatial derivative of $u(t,x)$, denoted by $\\\\partial_x u(t,x)$, and its representation as a Feynman-Kac type closed form. The chaos expansion of $\\\\partial_x u(t,x)$ makes it possible to find its (optimal) H\\\\\\\"older regularity especially in space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025723500017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了$[0,t]\乘以\mathbb R$上由时间齐次白噪声驱动的一维随机热方程的(唯一)温和解$u(t,x)$,在Wick-Skorokhod意义下。本文的主要成果是计算了$u(t,x)$的空间导数,表示为$\partial_x u(t,x)$,并将其表示为Feynman-Kac型封闭形式。混乱的扩张\ partial_x u (t, x)美元可以发现它(最优)H \“老规律特别是在空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Feynman-Kac approach for the spatial derivative of the solution to the Wick stochastic heat equation driven by time homogeneous white noise
We consider the (unique) mild solution $u(t,x)$ of a 1-dimensional stochastic heat equation on $[0,T]\times\mathbb R$ driven by time-homogeneous white noise in the Wick-Skorokhod sense. The main result of this paper is the computation of the spatial derivative of $u(t,x)$, denoted by $\partial_x u(t,x)$, and its representation as a Feynman-Kac type closed form. The chaos expansion of $\partial_x u(t,x)$ makes it possible to find its (optimal) H\"older regularity especially in space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信