计算强相关量子系统谱函数的矩阵积态递推方法

Yifan Tian, S. White
{"title":"计算强相关量子系统谱函数的矩阵积态递推方法","authors":"Yifan Tian, S. White","doi":"10.1103/PHYSREVB.103.125142","DOIUrl":null,"url":null,"abstract":"We present a method for extrapolation of real-time dynamical correlation functions which can improve the capability of matrix product state methods to compute spectral functions. Unlike the widely used linear prediction method, which ignores the origin of the data being extrapolated, our recursion methods utilize a representation of the wavefunction in terms of an expansion of the same wavefunction and its translations at earlier times. This recursion method is exact for a noninteracting Fermi system. Surprisingly, the recursion method is also more robust than linear prediction at large interaction strength. We test this method on the Hubbard two-leg ladder and present more accurate results for the spectral function than previous studies.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Matrix product state recursion methods for computing spectral functions of strongly correlated quantum systems\",\"authors\":\"Yifan Tian, S. White\",\"doi\":\"10.1103/PHYSREVB.103.125142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for extrapolation of real-time dynamical correlation functions which can improve the capability of matrix product state methods to compute spectral functions. Unlike the widely used linear prediction method, which ignores the origin of the data being extrapolated, our recursion methods utilize a representation of the wavefunction in terms of an expansion of the same wavefunction and its translations at earlier times. This recursion method is exact for a noninteracting Fermi system. Surprisingly, the recursion method is also more robust than linear prediction at large interaction strength. We test this method on the Hubbard two-leg ladder and present more accurate results for the spectral function than previous studies.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.103.125142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.125142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种实时动态相关函数的外推方法,提高了矩阵积状态法计算谱函数的能力。与广泛使用的线性预测方法不同,线性预测方法忽略了外推数据的起源,我们的递归方法利用了波函数的表示形式,即相同波函数的展开及其在早期的平移。这种递归方法对非相互作用的费米系统是精确的。令人惊讶的是,在大的相互作用强度下,递归方法也比线性预测更具鲁棒性。我们在哈伯德两腿梯上测试了这种方法,并给出了比以往研究更准确的谱函数结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix product state recursion methods for computing spectral functions of strongly correlated quantum systems
We present a method for extrapolation of real-time dynamical correlation functions which can improve the capability of matrix product state methods to compute spectral functions. Unlike the widely used linear prediction method, which ignores the origin of the data being extrapolated, our recursion methods utilize a representation of the wavefunction in terms of an expansion of the same wavefunction and its translations at earlier times. This recursion method is exact for a noninteracting Fermi system. Surprisingly, the recursion method is also more robust than linear prediction at large interaction strength. We test this method on the Hubbard two-leg ladder and present more accurate results for the spectral function than previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信