Yuliang Sheng, Yuxiang Chen, Jian-Feng Qiu, Xi Yang, Ru-Liang Zhang, Ying-Lun Sun
{"title":"生物电子学用黏附水凝胶","authors":"Yuliang Sheng, Yuxiang Chen, Jian-Feng Qiu, Xi Yang, Ru-Liang Zhang, Ying-Lun Sun","doi":"10.53388/bmec2023016","DOIUrl":null,"url":null,"abstract":"Benefiting from the unique advantages of superior biocompatibility, strong stability, good biodegradability, and adjustable mechanical properties, hydrogels have attracted extensive research interests in bioelectronics. However, due to the existence of an interface between hydrogels and human tissues, the transmission of electrical signals from the human tissues to the hydrogel electronic devices will be hindered. The adhesive hydrogels with adhesive properties can tightly combine with the human tissue, which can enhance the contact between the electronic devices and human tissues and reduce the contact resistance, thereby improving the performance of hydrogel electronic devices. In this review, we will discuss in detail the adhesion mechanism of adhesive hydrogels and elaborate on the design principles of adhesive hydrogels. After that, we will introduce some methods of performance evaluation for adhesive hydrogels. Finally, we will provide a perspective on the development of adhesive hydrogel bioelectronics.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adhesive hydrogels for bioelectronics\",\"authors\":\"Yuliang Sheng, Yuxiang Chen, Jian-Feng Qiu, Xi Yang, Ru-Liang Zhang, Ying-Lun Sun\",\"doi\":\"10.53388/bmec2023016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benefiting from the unique advantages of superior biocompatibility, strong stability, good biodegradability, and adjustable mechanical properties, hydrogels have attracted extensive research interests in bioelectronics. However, due to the existence of an interface between hydrogels and human tissues, the transmission of electrical signals from the human tissues to the hydrogel electronic devices will be hindered. The adhesive hydrogels with adhesive properties can tightly combine with the human tissue, which can enhance the contact between the electronic devices and human tissues and reduce the contact resistance, thereby improving the performance of hydrogel electronic devices. In this review, we will discuss in detail the adhesion mechanism of adhesive hydrogels and elaborate on the design principles of adhesive hydrogels. After that, we will introduce some methods of performance evaluation for adhesive hydrogels. Finally, we will provide a perspective on the development of adhesive hydrogel bioelectronics.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53388/bmec2023016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53388/bmec2023016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Benefiting from the unique advantages of superior biocompatibility, strong stability, good biodegradability, and adjustable mechanical properties, hydrogels have attracted extensive research interests in bioelectronics. However, due to the existence of an interface between hydrogels and human tissues, the transmission of electrical signals from the human tissues to the hydrogel electronic devices will be hindered. The adhesive hydrogels with adhesive properties can tightly combine with the human tissue, which can enhance the contact between the electronic devices and human tissues and reduce the contact resistance, thereby improving the performance of hydrogel electronic devices. In this review, we will discuss in detail the adhesion mechanism of adhesive hydrogels and elaborate on the design principles of adhesive hydrogels. After that, we will introduce some methods of performance evaluation for adhesive hydrogels. Finally, we will provide a perspective on the development of adhesive hydrogel bioelectronics.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.