奇异摄动最优控制问题及其在非线性结构分析中的应用

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
J. Lovísek
{"title":"奇异摄动最优控制问题及其在非线性结构分析中的应用","authors":"J. Lovísek","doi":"10.21136/am.1996.134328","DOIUrl":null,"url":null,"abstract":"Summary. This paper concerns an optimal control problem of elliptic singular perturba­ tions in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result is obtained.","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"58 1","pages":"299-320"},"PeriodicalIF":0.6000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Singular perturbations in optimal control problem with application to nonlinear structural analysis\",\"authors\":\"J. Lovísek\",\"doi\":\"10.21136/am.1996.134328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary. This paper concerns an optimal control problem of elliptic singular perturba­ tions in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result is obtained.\",\"PeriodicalId\":55505,\"journal\":{\"name\":\"Applications of Mathematics\",\"volume\":\"58 1\",\"pages\":\"299-320\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/am.1996.134328\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/am.1996.134328","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

总结。本文研究变分不等式中椭圆型奇异摄动的最优控制问题(控制也出现在系数、右侧和状态凸集中)。验证了最优控制的存在性。给出了该方法在含障碍物的小刚度弹塑性板的最优控制中的应用。对于边界有运动部分的弹塑性板,采用了原始有限元模型,得到了收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular perturbations in optimal control problem with application to nonlinear structural analysis
Summary. This paper concerns an optimal control problem of elliptic singular perturba­ tions in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applications of Mathematics
Applications of Mathematics 数学-应用数学
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
3.0 months
期刊介绍: Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering. The main topics covered include: - Mechanics of Solids; - Fluid Mechanics; - Electrical Engineering; - Solutions of Differential and Integral Equations; - Mathematical Physics; - Optimization; - Probability Mathematical Statistics. The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信