{"title":"几类少权线性码的构造及其应用","authors":"Canze Zhu, Qunying Liao","doi":"10.3934/amc.2022041","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, for any odd prime <inline-formula><tex-math id=\"M1\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula> and an integer <inline-formula><tex-math id=\"M2\">\\begin{document}$ m\\ge 3 $\\end{document}</tex-math></inline-formula>, several classes of linear codes with <inline-formula><tex-math id=\"M3\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula>-weight <inline-formula><tex-math id=\"M4\">\\begin{document}$ (t = 3,5,7) $\\end{document}</tex-math></inline-formula> are obtained based on some defining sets, and then their complete weight enumerators are determined explicitly by employing Gauss sums and quadratic character sums. Especially for <inline-formula><tex-math id=\"M5\">\\begin{document}$ m = 3 $\\end{document}</tex-math></inline-formula>, a class of MDS codes with parameters <inline-formula><tex-math id=\"M6\">\\begin{document}$ [p,3,p-2] $\\end{document}</tex-math></inline-formula> are obtained. Furthermore, some of these codes can be suitable for applications in secret sharing schemes and <inline-formula><tex-math id=\"M7\">\\begin{document}$ s $\\end{document}</tex-math></inline-formula>-sum sets for any odd <inline-formula><tex-math id=\"M8\">\\begin{document}$ s>1 $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Constructions for several classes of few-weight linear codes and their applications\",\"authors\":\"Canze Zhu, Qunying Liao\",\"doi\":\"10.3934/amc.2022041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, for any odd prime <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula> and an integer <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ m\\\\ge 3 $\\\\end{document}</tex-math></inline-formula>, several classes of linear codes with <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula>-weight <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ (t = 3,5,7) $\\\\end{document}</tex-math></inline-formula> are obtained based on some defining sets, and then their complete weight enumerators are determined explicitly by employing Gauss sums and quadratic character sums. Especially for <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ m = 3 $\\\\end{document}</tex-math></inline-formula>, a class of MDS codes with parameters <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ [p,3,p-2] $\\\\end{document}</tex-math></inline-formula> are obtained. Furthermore, some of these codes can be suitable for applications in secret sharing schemes and <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ s $\\\\end{document}</tex-math></inline-formula>-sum sets for any odd <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ s>1 $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/amc.2022041\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2022041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3
摘要
In this paper, for any odd prime \begin{document}$ p $\end{document} and an integer \begin{document}$ m\ge 3 $\end{document}, several classes of linear codes with \begin{document}$ t $\end{document}-weight \begin{document}$ (t = 3,5,7) $\end{document} are obtained based on some defining sets, and then their complete weight enumerators are determined explicitly by employing Gauss sums and quadratic character sums. Especially for \begin{document}$ m = 3 $\end{document}, a class of MDS codes with parameters \begin{document}$ [p,3,p-2] $\end{document} are obtained. Furthermore, some of these codes can be suitable for applications in secret sharing schemes and \begin{document}$ s $\end{document}-sum sets for any odd \begin{document}$ s>1 $\end{document}.
Constructions for several classes of few-weight linear codes and their applications
In this paper, for any odd prime \begin{document}$ p $\end{document} and an integer \begin{document}$ m\ge 3 $\end{document}, several classes of linear codes with \begin{document}$ t $\end{document}-weight \begin{document}$ (t = 3,5,7) $\end{document} are obtained based on some defining sets, and then their complete weight enumerators are determined explicitly by employing Gauss sums and quadratic character sums. Especially for \begin{document}$ m = 3 $\end{document}, a class of MDS codes with parameters \begin{document}$ [p,3,p-2] $\end{document} are obtained. Furthermore, some of these codes can be suitable for applications in secret sharing schemes and \begin{document}$ s $\end{document}-sum sets for any odd \begin{document}$ s>1 $\end{document}.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.