最优到达估计和度量学习

Eddie Aamari, Cl'ement Berenfeld, Clément Levrard
{"title":"最优到达估计和度量学习","authors":"Eddie Aamari, Cl'ement Berenfeld, Clément Levrard","doi":"10.1214/23-aos2281","DOIUrl":null,"url":null,"abstract":"We study the estimation of the reach, an ubiquitous regularity parameter in manifold estimation and geometric data analysis. Given an i.i.d. sample over an unknown $d$-dimensional $\\mathcal{C}^k$-smooth submanifold of $\\mathbb{R}^D$, we provide optimal nonasymptotic bounds for the estimation of its reach. We build upon a formulation of the reach in terms of maximal curvature on one hand, and geodesic metric distortion on the other hand. The derived rates are adaptive, with rates depending on whether the reach of $M$ arises from curvature or from a bottleneck structure. In the process, we derive optimal geodesic metric estimation bounds.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal reach estimation and metric learning\",\"authors\":\"Eddie Aamari, Cl'ement Berenfeld, Clément Levrard\",\"doi\":\"10.1214/23-aos2281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the estimation of the reach, an ubiquitous regularity parameter in manifold estimation and geometric data analysis. Given an i.i.d. sample over an unknown $d$-dimensional $\\\\mathcal{C}^k$-smooth submanifold of $\\\\mathbb{R}^D$, we provide optimal nonasymptotic bounds for the estimation of its reach. We build upon a formulation of the reach in terms of maximal curvature on one hand, and geodesic metric distortion on the other hand. The derived rates are adaptive, with rates depending on whether the reach of $M$ arises from curvature or from a bottleneck structure. In the process, we derive optimal geodesic metric estimation bounds.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aos2281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了在流形估计和几何数据分析中普遍存在的正则参数——到达量的估计。在未知的$\mathbb{R}^ d的$\mathbb{R}^ d的$\mathcal{C}^k$光滑子流形上给定一个i. id样本,我们提供了估计其到达的最优非渐近界。我们一方面建立在最大曲率方面的范围公式,另一方面建立在测地线度量失真方面的公式。导出的速率是自适应的,速率取决于$M$的范围是来自曲率还是来自瓶颈结构。在此过程中,我们导出了最优测地线度量估计界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal reach estimation and metric learning
We study the estimation of the reach, an ubiquitous regularity parameter in manifold estimation and geometric data analysis. Given an i.i.d. sample over an unknown $d$-dimensional $\mathcal{C}^k$-smooth submanifold of $\mathbb{R}^D$, we provide optimal nonasymptotic bounds for the estimation of its reach. We build upon a formulation of the reach in terms of maximal curvature on one hand, and geodesic metric distortion on the other hand. The derived rates are adaptive, with rates depending on whether the reach of $M$ arises from curvature or from a bottleneck structure. In the process, we derive optimal geodesic metric estimation bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信