紧亚解析集中正规电流和积分电流的线性等周不等式

IF 0.4 Q4 MATHEMATICS
T. Pauw, R. Hardt
{"title":"紧亚解析集中正规电流和积分电流的线性等周不等式","authors":"T. Pauw, R. Hardt","doi":"10.5427/jsing.2022.24f","DOIUrl":null,"url":null,"abstract":"The isoperimetric inequality for a smooth compact Riemannian manifold $A$ provides a positive ${\\bf c}(A)$, so that for any $k+1$ dimensional integral current $S_0$ in $A$ there exists an integral current $ S$ in $A$ with $\\partial S=\\partial S_0$ and ${\\bf M}(S)\\leq {\\bf c}(A){\\bf M}(\\partial S)^{(k+1)/k}$. Although such an inequality still holds for any compact Lipschitz neighborhood retract $A$, it may fail in case $A$ contains a single polynomial singularity. Here, replacing $(k+1)/k$ by $1$, we find that a linear inequality ${\\bf M}(S)\\leq {\\bf c}(A){\\bf M}(\\partial S)$ is valid for any compact algebraic, semi-algebraic, or even subanalytic set $A$. In such a set, this linear inequality holds not only for integral currents, which have $\\boldsymbol{Z}$ coefficients, but also for normal currents having $\\boldsymbol{R}$ coefficients and generally for normal flat chains with coefficients in any complete normed abelian group. A relative version for a subanalytic pair $B\\subset A$ is also true, and there are applications to variational and metric properties of subanalytic sets.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Linear isoperimetric inequality for normal and integral currents in compact subanalytic sets\",\"authors\":\"T. Pauw, R. Hardt\",\"doi\":\"10.5427/jsing.2022.24f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The isoperimetric inequality for a smooth compact Riemannian manifold $A$ provides a positive ${\\\\bf c}(A)$, so that for any $k+1$ dimensional integral current $S_0$ in $A$ there exists an integral current $ S$ in $A$ with $\\\\partial S=\\\\partial S_0$ and ${\\\\bf M}(S)\\\\leq {\\\\bf c}(A){\\\\bf M}(\\\\partial S)^{(k+1)/k}$. Although such an inequality still holds for any compact Lipschitz neighborhood retract $A$, it may fail in case $A$ contains a single polynomial singularity. Here, replacing $(k+1)/k$ by $1$, we find that a linear inequality ${\\\\bf M}(S)\\\\leq {\\\\bf c}(A){\\\\bf M}(\\\\partial S)$ is valid for any compact algebraic, semi-algebraic, or even subanalytic set $A$. In such a set, this linear inequality holds not only for integral currents, which have $\\\\boldsymbol{Z}$ coefficients, but also for normal currents having $\\\\boldsymbol{R}$ coefficients and generally for normal flat chains with coefficients in any complete normed abelian group. A relative version for a subanalytic pair $B\\\\subset A$ is also true, and there are applications to variational and metric properties of subanalytic sets.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2022.24f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.24f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

光滑紧黎曼流形的等周不等式 $A$ 提供积极的 ${\bf c}(A)$,所以对于任何 $k+1$ 量纲积分电流 $S_0$ 在 $A$ 存在一个积分电流 $ S$ 在 $A$ 有 $\partial S=\partial S_0$ 和 ${\bf M}(S)\leq {\bf c}(A){\bf M}(\partial S)^{(k+1)/k}$. 尽管这样的不等式仍然适用于任何紧的Lipschitz邻域缩回 $A$万一,它可能会失败 $A$ 包含一个单多项式奇点。这里,替换 $(k+1)/k$ 通过 $1$,我们发现了一个线性不等式 ${\bf M}(S)\leq {\bf c}(A){\bf M}(\partial S)$ 是否对任何紧代数,半代数,甚至亚解析集合有效 $A$. 在这样的集合中,这个线性不等式不仅对积分电流成立 $\boldsymbol{Z}$ 系数,也适用于正常电流 $\boldsymbol{R}$ 在任何完全赋范阿贝尔群中具有系数的正规平链的系数和一般。子解析对的相对版本 $B\subset A$ 也是成立的,并且对子解析集的变分性质和度量性质也有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear isoperimetric inequality for normal and integral currents in compact subanalytic sets
The isoperimetric inequality for a smooth compact Riemannian manifold $A$ provides a positive ${\bf c}(A)$, so that for any $k+1$ dimensional integral current $S_0$ in $A$ there exists an integral current $ S$ in $A$ with $\partial S=\partial S_0$ and ${\bf M}(S)\leq {\bf c}(A){\bf M}(\partial S)^{(k+1)/k}$. Although such an inequality still holds for any compact Lipschitz neighborhood retract $A$, it may fail in case $A$ contains a single polynomial singularity. Here, replacing $(k+1)/k$ by $1$, we find that a linear inequality ${\bf M}(S)\leq {\bf c}(A){\bf M}(\partial S)$ is valid for any compact algebraic, semi-algebraic, or even subanalytic set $A$. In such a set, this linear inequality holds not only for integral currents, which have $\boldsymbol{Z}$ coefficients, but also for normal currents having $\boldsymbol{R}$ coefficients and generally for normal flat chains with coefficients in any complete normed abelian group. A relative version for a subanalytic pair $B\subset A$ is also true, and there are applications to variational and metric properties of subanalytic sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信