{"title":"长度为5且幂零指数为4的有限局部Frobenius非链环上的恒环码","authors":"C. A. Castillo-Guillén, C. Rentería-Márquez","doi":"10.2478/auom-2020-0020","DOIUrl":null,"url":null,"abstract":"Abstract The family of finite local Frobenius non-chain rings of length 5 and nilpotency index 4 is determined, as a by-product all finite local Frobenius non-chain rings with p5 elements (p a prime) and nilpotency index 4 are given. And the number and structure of γ-constacyclic codes over those rings, of length relatively prime to the characteristic of the residue field of the ring, are determined.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"20 1","pages":"67 - 91"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constacyclic codes over finite local Frobenius non-chain rings of length 5 and nilpotency index 4\",\"authors\":\"C. A. Castillo-Guillén, C. Rentería-Márquez\",\"doi\":\"10.2478/auom-2020-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The family of finite local Frobenius non-chain rings of length 5 and nilpotency index 4 is determined, as a by-product all finite local Frobenius non-chain rings with p5 elements (p a prime) and nilpotency index 4 are given. And the number and structure of γ-constacyclic codes over those rings, of length relatively prime to the characteristic of the residue field of the ring, are determined.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"20 1\",\"pages\":\"67 - 91\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Constacyclic codes over finite local Frobenius non-chain rings of length 5 and nilpotency index 4
Abstract The family of finite local Frobenius non-chain rings of length 5 and nilpotency index 4 is determined, as a by-product all finite local Frobenius non-chain rings with p5 elements (p a prime) and nilpotency index 4 are given. And the number and structure of γ-constacyclic codes over those rings, of length relatively prime to the characteristic of the residue field of the ring, are determined.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.