Uwakwe Joy Ijeoma, Inyama Simeon Chioma, O. Andrew
{"title":"马立克病的年龄感染模型及控制","authors":"Uwakwe Joy Ijeoma, Inyama Simeon Chioma, O. Andrew","doi":"10.11648/j.acm.20200905.13","DOIUrl":null,"url":null,"abstract":"We formulated three compartmental model of Marek Disease model. We first determined the basic Reproduction number and the existence of Steady (Equilibrium) states (disease-free and endemic). Conditions for the local stability of the disease-free and endemic steady states were determined. Further, the Global stability of the disease-free equilibrium (DFE) and endemic equilibrium were proved using Lyponav method. We went further to carry out the sensitivity analysis or parametric dependence on R0 and later formulated the optimal control problem. We finally looked at numerical Results on poultry productivity in the presence of Marek disease and we drew five graphs to demonstrate this. The first figure shows the effect of both vaccination (v) and biosecurity measures (u) on the latently infected birds. The population of infected birds increases speedily and then remains stable without the application of any control measure, with the controls, the population increases to about 145 and then begins to reduce from day 8 till it drops to 50 on day 20 and then remains stable. With this strategy, only bird vaccination (v) is applied to control the system while the other control is set to zero. In the second figure, the effect of bird vaccination and its’ positive impact is revealed, though there is an increase to about 160 before a decrease occurs. From the third figure, as the control (u) ranges from 0.2 to 0.9, we see that the bird population still has a high level of latently infected birds. This result from figure shows that the bird population is not free from the disease, hence, the biosecurity control strategy is not effective without vaccination of susceptible birds and hence it is not preferable as the only control measure for marek disease. The numerical result in the fourth figure shows that as the latently infected bird population increases without control, with vaccination it decreases as more susceptible birds are vaccinated. From the fifth figure we observe, that as the control parameter increases, the total deaths by infection reduces, also as the age of the infection increases to the maximum age of infection which is 6 months (thatis, T=24 weeks), the number of deaths increases to 30 in a day. Hence, control measures should be applied at the early ages of infection in order to avoid high mortality rate during the outbreak of the disease.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"45 1","pages":"165"},"PeriodicalIF":4.6000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age-Infection Model and Control of Marek Disease\",\"authors\":\"Uwakwe Joy Ijeoma, Inyama Simeon Chioma, O. Andrew\",\"doi\":\"10.11648/j.acm.20200905.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulated three compartmental model of Marek Disease model. We first determined the basic Reproduction number and the existence of Steady (Equilibrium) states (disease-free and endemic). Conditions for the local stability of the disease-free and endemic steady states were determined. Further, the Global stability of the disease-free equilibrium (DFE) and endemic equilibrium were proved using Lyponav method. We went further to carry out the sensitivity analysis or parametric dependence on R0 and later formulated the optimal control problem. We finally looked at numerical Results on poultry productivity in the presence of Marek disease and we drew five graphs to demonstrate this. The first figure shows the effect of both vaccination (v) and biosecurity measures (u) on the latently infected birds. The population of infected birds increases speedily and then remains stable without the application of any control measure, with the controls, the population increases to about 145 and then begins to reduce from day 8 till it drops to 50 on day 20 and then remains stable. With this strategy, only bird vaccination (v) is applied to control the system while the other control is set to zero. In the second figure, the effect of bird vaccination and its’ positive impact is revealed, though there is an increase to about 160 before a decrease occurs. From the third figure, as the control (u) ranges from 0.2 to 0.9, we see that the bird population still has a high level of latently infected birds. This result from figure shows that the bird population is not free from the disease, hence, the biosecurity control strategy is not effective without vaccination of susceptible birds and hence it is not preferable as the only control measure for marek disease. The numerical result in the fourth figure shows that as the latently infected bird population increases without control, with vaccination it decreases as more susceptible birds are vaccinated. From the fifth figure we observe, that as the control parameter increases, the total deaths by infection reduces, also as the age of the infection increases to the maximum age of infection which is 6 months (thatis, T=24 weeks), the number of deaths increases to 30 in a day. Hence, control measures should be applied at the early ages of infection in order to avoid high mortality rate during the outbreak of the disease.\",\"PeriodicalId\":55503,\"journal\":{\"name\":\"Applied and Computational Mathematics\",\"volume\":\"45 1\",\"pages\":\"165\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11648/j.acm.20200905.13\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/j.acm.20200905.13","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We formulated three compartmental model of Marek Disease model. We first determined the basic Reproduction number and the existence of Steady (Equilibrium) states (disease-free and endemic). Conditions for the local stability of the disease-free and endemic steady states were determined. Further, the Global stability of the disease-free equilibrium (DFE) and endemic equilibrium were proved using Lyponav method. We went further to carry out the sensitivity analysis or parametric dependence on R0 and later formulated the optimal control problem. We finally looked at numerical Results on poultry productivity in the presence of Marek disease and we drew five graphs to demonstrate this. The first figure shows the effect of both vaccination (v) and biosecurity measures (u) on the latently infected birds. The population of infected birds increases speedily and then remains stable without the application of any control measure, with the controls, the population increases to about 145 and then begins to reduce from day 8 till it drops to 50 on day 20 and then remains stable. With this strategy, only bird vaccination (v) is applied to control the system while the other control is set to zero. In the second figure, the effect of bird vaccination and its’ positive impact is revealed, though there is an increase to about 160 before a decrease occurs. From the third figure, as the control (u) ranges from 0.2 to 0.9, we see that the bird population still has a high level of latently infected birds. This result from figure shows that the bird population is not free from the disease, hence, the biosecurity control strategy is not effective without vaccination of susceptible birds and hence it is not preferable as the only control measure for marek disease. The numerical result in the fourth figure shows that as the latently infected bird population increases without control, with vaccination it decreases as more susceptible birds are vaccinated. From the fifth figure we observe, that as the control parameter increases, the total deaths by infection reduces, also as the age of the infection increases to the maximum age of infection which is 6 months (thatis, T=24 weeks), the number of deaths increases to 30 in a day. Hence, control measures should be applied at the early ages of infection in order to avoid high mortality rate during the outbreak of the disease.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.