马来西亚沙巴州马拉瓦利岛离网混合系统的技术经济分析

Alvin Ming Kai See , Kamyar Mehranzamir , Shahabaldin Rezania , Negar Rahimi , Hadi Nabipour Afrouzi , Ateeb Hassan
{"title":"马来西亚沙巴州马拉瓦利岛离网混合系统的技术经济分析","authors":"Alvin Ming Kai See ,&nbsp;Kamyar Mehranzamir ,&nbsp;Shahabaldin Rezania ,&nbsp;Negar Rahimi ,&nbsp;Hadi Nabipour Afrouzi ,&nbsp;Ateeb Hassan","doi":"10.1016/j.rset.2022.100040","DOIUrl":null,"url":null,"abstract":"<div><p>As a developing country, Malaysia has always faced the problem of rural electrification in its islands. Rural islands cannot be connected to the grid as it is economically not feasible due to the low number of residents. The high greenhouse gas emission of the diesel generator is unfavorable to the residents. This study aims to assess hybrid system implementation in a remote community on Malawali island in Sabah, Malaysia, to provide the lowest price of electricity. Four scenarios, including diesel generator (DG) (A), PV/WT/Battery/DG (B), PV/Battery/DG (C), and PV/WT/Battery (D), are developed. A Techno-economic analysis is carried out to determine the most competitive system. Emissions are also observed to choose the optimum system. Results show that scenario B, with the net present cost (NPC) of 188,814$ and the cost of energy (COE) of 0.198$/kWh, is reliable in delivering the electricity required while having a reasonable cost relatively low emission. Sensitivity analysis is also carried out with different parameters to examine its effects on the system's sustainability throughout its lifetime.</p></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":"2 ","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667095X22000241/pdfft?md5=83bd033aab5fb61c60de87b8888bcadc&pid=1-s2.0-S2667095X22000241-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Techno-economic analysis of an off-grid hybrid system for a remote island in Malaysia: Malawali island, Sabah\",\"authors\":\"Alvin Ming Kai See ,&nbsp;Kamyar Mehranzamir ,&nbsp;Shahabaldin Rezania ,&nbsp;Negar Rahimi ,&nbsp;Hadi Nabipour Afrouzi ,&nbsp;Ateeb Hassan\",\"doi\":\"10.1016/j.rset.2022.100040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a developing country, Malaysia has always faced the problem of rural electrification in its islands. Rural islands cannot be connected to the grid as it is economically not feasible due to the low number of residents. The high greenhouse gas emission of the diesel generator is unfavorable to the residents. This study aims to assess hybrid system implementation in a remote community on Malawali island in Sabah, Malaysia, to provide the lowest price of electricity. Four scenarios, including diesel generator (DG) (A), PV/WT/Battery/DG (B), PV/Battery/DG (C), and PV/WT/Battery (D), are developed. A Techno-economic analysis is carried out to determine the most competitive system. Emissions are also observed to choose the optimum system. Results show that scenario B, with the net present cost (NPC) of 188,814$ and the cost of energy (COE) of 0.198$/kWh, is reliable in delivering the electricity required while having a reasonable cost relatively low emission. Sensitivity analysis is also carried out with different parameters to examine its effects on the system's sustainability throughout its lifetime.</p></div>\",\"PeriodicalId\":101071,\"journal\":{\"name\":\"Renewable and Sustainable Energy Transition\",\"volume\":\"2 \",\"pages\":\"Article 100040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667095X22000241/pdfft?md5=83bd033aab5fb61c60de87b8888bcadc&pid=1-s2.0-S2667095X22000241-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667095X22000241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X22000241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

作为一个发展中国家,马来西亚一直面临着岛屿农村电气化的问题。农村岛屿无法接入电网,因为居民数量少,在经济上不可行。柴油发电机组温室气体排放量大,对居民不利。本研究旨在评估混合系统在马来西亚沙巴州马拉瓦利岛偏远社区的实施情况,以提供最低的电价。分为柴油发电机(DG) (A)、PV/WT/Battery/DG (B)、PV/Battery/DG (C)、PV/WT/Battery (D)四种场景。通过技术经济分析来确定最具竞争力的制度。同时对排放进行观测,以选择最优系统。结果表明,方案B的净当前成本(NPC)为188,814美元,能源成本(COE)为0.198美元/千瓦时,能够可靠地提供所需的电力,同时具有合理的成本和较低的排放。采用不同参数进行敏感性分析,考察其对系统全寿命可持续性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Techno-economic analysis of an off-grid hybrid system for a remote island in Malaysia: Malawali island, Sabah

As a developing country, Malaysia has always faced the problem of rural electrification in its islands. Rural islands cannot be connected to the grid as it is economically not feasible due to the low number of residents. The high greenhouse gas emission of the diesel generator is unfavorable to the residents. This study aims to assess hybrid system implementation in a remote community on Malawali island in Sabah, Malaysia, to provide the lowest price of electricity. Four scenarios, including diesel generator (DG) (A), PV/WT/Battery/DG (B), PV/Battery/DG (C), and PV/WT/Battery (D), are developed. A Techno-economic analysis is carried out to determine the most competitive system. Emissions are also observed to choose the optimum system. Results show that scenario B, with the net present cost (NPC) of 188,814$ and the cost of energy (COE) of 0.198$/kWh, is reliable in delivering the electricity required while having a reasonable cost relatively low emission. Sensitivity analysis is also carried out with different parameters to examine its effects on the system's sustainability throughout its lifetime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信