矩阵和背包均值问题的逼近算法

Ao Zhao, Qian Liu, Yang Zhou, Min Li
{"title":"矩阵和背包均值问题的逼近算法","authors":"Ao Zhao, Qian Liu, Yang Zhou, Min Li","doi":"10.1142/s0217595922400073","DOIUrl":null,"url":null,"abstract":"In this paper, we concentrate on studying the [Formula: see text]-means problem with a matroid or a knapsack constraint. In the matroid means problem, given an observation set and a matroid, the goal is to find a center set from the independent sets to minimize the cost. By using the linear programming [Formula: see text]-rounding technology, we obtain a constant approximation guarantee. For the knapsack means problem, we adopt a similar strategy to that of matroid means problem, whereas the difference is that we add a knapsack covering inequality to the relaxed LP in order to decrease the unbounded integrality gap.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation Algorithms for Matroid and Knapsack Means Problems\",\"authors\":\"Ao Zhao, Qian Liu, Yang Zhou, Min Li\",\"doi\":\"10.1142/s0217595922400073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we concentrate on studying the [Formula: see text]-means problem with a matroid or a knapsack constraint. In the matroid means problem, given an observation set and a matroid, the goal is to find a center set from the independent sets to minimize the cost. By using the linear programming [Formula: see text]-rounding technology, we obtain a constant approximation guarantee. For the knapsack means problem, we adopt a similar strategy to that of matroid means problem, whereas the difference is that we add a knapsack covering inequality to the relaxed LP in order to decrease the unbounded integrality gap.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217595922400073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595922400073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们集中研究了具有阵或背包约束的[公式:见文]均值问题。在拟阵均值问题中,给定一个观测集和一个拟阵,目标是从独立集中找到一个中心集,使代价最小化。采用线性规划[公式:见文]-舍入技术,得到了常逼近的保证。对于背包均值问题,我们采用了与矩阵均值问题类似的策略,不同的是,我们在松弛LP上增加了一个背包覆盖不等式,以减小无界积分差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation Algorithms for Matroid and Knapsack Means Problems
In this paper, we concentrate on studying the [Formula: see text]-means problem with a matroid or a knapsack constraint. In the matroid means problem, given an observation set and a matroid, the goal is to find a center set from the independent sets to minimize the cost. By using the linear programming [Formula: see text]-rounding technology, we obtain a constant approximation guarantee. For the knapsack means problem, we adopt a similar strategy to that of matroid means problem, whereas the difference is that we add a knapsack covering inequality to the relaxed LP in order to decrease the unbounded integrality gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信