基于层次聚类的印地语文本抽取与抽象摘要

Cheshta Kwatra, K. Gupta
{"title":"基于层次聚类的印地语文本抽取与抽象摘要","authors":"Cheshta Kwatra, K. Gupta","doi":"10.1109/ICSES52305.2021.9633789","DOIUrl":null,"url":null,"abstract":"Text Summarization is a widely researched and successful area of Natural Language Processing application. However, it remains limited to established languages such as English, French, etc. In this paper, we propose and compare extractive and abstractive summarization techniques for Hindi text documents. For either summarization, we first propose ward hierarchical agglomerative clustering. This is followed by the PageRank algorithm for extractive summarization while in abstractive summarization, we present an approach based on multi-sentence compression which only requires a POS tagger to generate Hindi text summaries.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extractive and Abstractive Summarization for Hindi Text using Hierarchical Clustering\",\"authors\":\"Cheshta Kwatra, K. Gupta\",\"doi\":\"10.1109/ICSES52305.2021.9633789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text Summarization is a widely researched and successful area of Natural Language Processing application. However, it remains limited to established languages such as English, French, etc. In this paper, we propose and compare extractive and abstractive summarization techniques for Hindi text documents. For either summarization, we first propose ward hierarchical agglomerative clustering. This is followed by the PageRank algorithm for extractive summarization while in abstractive summarization, we present an approach based on multi-sentence compression which only requires a POS tagger to generate Hindi text summaries.\",\"PeriodicalId\":6777,\"journal\":{\"name\":\"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)\",\"volume\":\"23 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSES52305.2021.9633789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

文本摘要是自然语言处理应用中一个被广泛研究和成功的领域。然而,它仍然局限于已建立的语言,如英语、法语等。在本文中,我们提出并比较了印地语文本文档的抽取和抽象摘要技术。对于这两种总结,我们首先提出了分层聚类。其次是用于抽取摘要的PageRank算法,而在抽象摘要中,我们提出了一种基于多句压缩的方法,该方法只需要一个POS标记器就可以生成印地语文本摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extractive and Abstractive Summarization for Hindi Text using Hierarchical Clustering
Text Summarization is a widely researched and successful area of Natural Language Processing application. However, it remains limited to established languages such as English, French, etc. In this paper, we propose and compare extractive and abstractive summarization techniques for Hindi text documents. For either summarization, we first propose ward hierarchical agglomerative clustering. This is followed by the PageRank algorithm for extractive summarization while in abstractive summarization, we present an approach based on multi-sentence compression which only requires a POS tagger to generate Hindi text summaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信