基于乘数交替方向法的高维尺度函数回归

Zhaohu Fan, M. Reimherr
{"title":"基于乘数交替方向法的高维尺度函数回归","authors":"Zhaohu Fan, M. Reimherr","doi":"10.1109/ICISCE.2016.93","DOIUrl":null,"url":null,"abstract":"In [10] and [16], we proposed tools for simultaneous variable selection and parameter estimation in a functional linear model with a functional outcome and a large number of scalar predictor. We call these techniques Function-on-Scalar Lasso (FSL) and Adaptive Function-on-Scalar Lasso(AFSL). A scalar group lasso was used to fit the FSL and AFSL estimates. While this approach works well, we improve it by producing custom ADMM methods which are specifically designed for functional data. We propose this new framework as a computational tool for finding FSL estimates. Through our numerical studies, we demonstrate the computational improvement of our methodology.","PeriodicalId":6882,"journal":{"name":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","volume":"29 1","pages":"397-399"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-Dimensional Function-on-Scale Regression via the Alternating Direction Method of Multipliers\",\"authors\":\"Zhaohu Fan, M. Reimherr\",\"doi\":\"10.1109/ICISCE.2016.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [10] and [16], we proposed tools for simultaneous variable selection and parameter estimation in a functional linear model with a functional outcome and a large number of scalar predictor. We call these techniques Function-on-Scalar Lasso (FSL) and Adaptive Function-on-Scalar Lasso(AFSL). A scalar group lasso was used to fit the FSL and AFSL estimates. While this approach works well, we improve it by producing custom ADMM methods which are specifically designed for functional data. We propose this new framework as a computational tool for finding FSL estimates. Through our numerical studies, we demonstrate the computational improvement of our methodology.\",\"PeriodicalId\":6882,\"journal\":{\"name\":\"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)\",\"volume\":\"29 1\",\"pages\":\"397-399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCE.2016.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2016.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在[10]和[16]中,我们提出了在具有函数结果和大量标量预测器的函数线性模型中同时进行变量选择和参数估计的工具。我们将这些技术称为标量函数套索(FSL)和自适应标量函数套索(AFSL)。使用标量群套索拟合FSL和AFSL估计。虽然这种方法效果很好,但我们通过生成专门为功能数据设计的定制ADMM方法来改进它。我们提出这个新的框架作为寻找FSL估计的计算工具。通过我们的数值研究,我们证明了我们的方法在计算上的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Dimensional Function-on-Scale Regression via the Alternating Direction Method of Multipliers
In [10] and [16], we proposed tools for simultaneous variable selection and parameter estimation in a functional linear model with a functional outcome and a large number of scalar predictor. We call these techniques Function-on-Scalar Lasso (FSL) and Adaptive Function-on-Scalar Lasso(AFSL). A scalar group lasso was used to fit the FSL and AFSL estimates. While this approach works well, we improve it by producing custom ADMM methods which are specifically designed for functional data. We propose this new framework as a computational tool for finding FSL estimates. Through our numerical studies, we demonstrate the computational improvement of our methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信