220-330 GHz共面探针跃迁的微机械硅芯衬底集成波导

Aleksandr Krivovitca, U. Shah, O. Glubokov, J. Oberhammer
{"title":"220-330 GHz共面探针跃迁的微机械硅芯衬底集成波导","authors":"Aleksandr Krivovitca, U. Shah, O. Glubokov, J. Oberhammer","doi":"10.1109/MWSYM.2018.8439598","DOIUrl":null,"url":null,"abstract":"In this paper, we present for the first time on, to the best of our knowledge, the first silicon-core micromachined sub-strate-integrated waveguide (SIW) in the 220–325 GHz frequency range. In contrast to the fabrication methods used for conventional SIW known from substantially lower frequencies, micromachining allows for a full-height waveguide and near-ideal and arbitrarily shaped sidewalls. The silicon dielectric core allows for downscaling the waveguide and components by a factor of 3.4 as compared to an air-filled waveguide. At 330 GHz, the measured waveguide insertion loss is as low as 0.43 dB/mm (0.14 dB/λg, normalized to the guided wavelength). Devices were manufactured using a two-mask micromachining process. Furthermore, a low-loss ultra-wideband coplanar-waveguide (CPW) transition was successfully implemented, which comprises the very first CPW-to-SIW transitions in this frequency range. The measured transition performance is better than 0.5 dB insertion loss (average of 0.43 dB in the band above 15% above the waveguide-cutoff frequency), which is lower than previously reported CPW-to-SIW transitions even at 3 times lower frequencies, and the return loss is better than 14 dB for 75% of the waveguide band.","PeriodicalId":6675,"journal":{"name":"2018 IEEE/MTT-S International Microwave Symposium - IMS","volume":"158 1","pages":"190-193"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Micromachined Silicon-core Substrate-integrated Waveguides with Co-planarprobe Transitions at 220–330 GHz\",\"authors\":\"Aleksandr Krivovitca, U. Shah, O. Glubokov, J. Oberhammer\",\"doi\":\"10.1109/MWSYM.2018.8439598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present for the first time on, to the best of our knowledge, the first silicon-core micromachined sub-strate-integrated waveguide (SIW) in the 220–325 GHz frequency range. In contrast to the fabrication methods used for conventional SIW known from substantially lower frequencies, micromachining allows for a full-height waveguide and near-ideal and arbitrarily shaped sidewalls. The silicon dielectric core allows for downscaling the waveguide and components by a factor of 3.4 as compared to an air-filled waveguide. At 330 GHz, the measured waveguide insertion loss is as low as 0.43 dB/mm (0.14 dB/λg, normalized to the guided wavelength). Devices were manufactured using a two-mask micromachining process. Furthermore, a low-loss ultra-wideband coplanar-waveguide (CPW) transition was successfully implemented, which comprises the very first CPW-to-SIW transitions in this frequency range. The measured transition performance is better than 0.5 dB insertion loss (average of 0.43 dB in the band above 15% above the waveguide-cutoff frequency), which is lower than previously reported CPW-to-SIW transitions even at 3 times lower frequencies, and the return loss is better than 14 dB for 75% of the waveguide band.\",\"PeriodicalId\":6675,\"journal\":{\"name\":\"2018 IEEE/MTT-S International Microwave Symposium - IMS\",\"volume\":\"158 1\",\"pages\":\"190-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/MTT-S International Microwave Symposium - IMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2018.8439598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/MTT-S International Microwave Symposium - IMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2018.8439598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,据我们所知,我们首次提出了220-325 GHz频率范围内的第一个硅核微机械基板集成波导(SIW)。与传统的低频率SIW的制造方法相比,微加工允许全高波导和接近理想的任意形状的侧壁。与充气波导相比,硅电介质芯允许将波导和元件缩小3.4倍。在330 GHz时,测量到的波导插入损耗低至0.43 dB/mm (0.14 dB/λg,归一化到波导波长)。器件采用双掩模微加工工艺制造。此外,成功实现了低损耗超宽带共面波导(CPW)转换,其中包括该频率范围内的第一个CPW到siw转换。测量到的转换性能优于0.5 dB插入损耗(在波导截止频率以上15%以上的频带中平均为0.43 dB),即使在低3倍的频率下也低于先前报道的cpw到siw转换,并且在75%的波导频带中回波损耗优于14 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micromachined Silicon-core Substrate-integrated Waveguides with Co-planarprobe Transitions at 220–330 GHz
In this paper, we present for the first time on, to the best of our knowledge, the first silicon-core micromachined sub-strate-integrated waveguide (SIW) in the 220–325 GHz frequency range. In contrast to the fabrication methods used for conventional SIW known from substantially lower frequencies, micromachining allows for a full-height waveguide and near-ideal and arbitrarily shaped sidewalls. The silicon dielectric core allows for downscaling the waveguide and components by a factor of 3.4 as compared to an air-filled waveguide. At 330 GHz, the measured waveguide insertion loss is as low as 0.43 dB/mm (0.14 dB/λg, normalized to the guided wavelength). Devices were manufactured using a two-mask micromachining process. Furthermore, a low-loss ultra-wideband coplanar-waveguide (CPW) transition was successfully implemented, which comprises the very first CPW-to-SIW transitions in this frequency range. The measured transition performance is better than 0.5 dB insertion loss (average of 0.43 dB in the band above 15% above the waveguide-cutoff frequency), which is lower than previously reported CPW-to-SIW transitions even at 3 times lower frequencies, and the return loss is better than 14 dB for 75% of the waveguide band.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信