交叉距离场碰撞GPU

Bastian Krayer, Rebekka Görge, Stefan Müller
{"title":"交叉距离场碰撞GPU","authors":"Bastian Krayer, Rebekka Görge, Stefan Müller","doi":"10.2312/pg.20221242","DOIUrl":null,"url":null,"abstract":"We present a framework for finding collision points between objects represented by signed distance fields. Particles are used to sample the region where intersections can occur. The distance field representation is used to project the particles onto the surface of the intersection of both objects. From there information, such as collision normals and intersection depth can be extracted. This allows for handling various types of objects in a unified way. Due to the particle approach, the algorithm is well suited to the GPU.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"91 1","pages":"23-28"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection Distance Field Collision for GPU\",\"authors\":\"Bastian Krayer, Rebekka Görge, Stefan Müller\",\"doi\":\"10.2312/pg.20221242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework for finding collision points between objects represented by signed distance fields. Particles are used to sample the region where intersections can occur. The distance field representation is used to project the particles onto the surface of the intersection of both objects. From there information, such as collision normals and intersection depth can be extracted. This allows for handling various types of objects in a unified way. Due to the particle approach, the algorithm is well suited to the GPU.\",\"PeriodicalId\":88304,\"journal\":{\"name\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"volume\":\"91 1\",\"pages\":\"23-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/pg.20221242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20221242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个框架,用于寻找由符号距离域表示的对象之间的碰撞点。粒子被用来对可能发生交集的区域进行采样。距离场表示用于将粒子投影到两个物体相交的表面上。从那里可以提取碰撞法线和相交深度等信息。这允许以统一的方式处理各种类型的对象。由于采用粒子方法,该算法非常适合GPU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection Distance Field Collision for GPU
We present a framework for finding collision points between objects represented by signed distance fields. Particles are used to sample the region where intersections can occur. The distance field representation is used to project the particles onto the surface of the intersection of both objects. From there information, such as collision normals and intersection depth can be extracted. This allows for handling various types of objects in a unified way. Due to the particle approach, the algorithm is well suited to the GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信