{"title":"与多相体相比,点粒子的刚性旋转引力束缚系统","authors":"Yngve Hopstad, J. Myrheim","doi":"10.1142/S0129183120500904","DOIUrl":null,"url":null,"abstract":"In order to simulate rigidly rotating polytropes we have simulated systems of $N$ point particles, with $N$ up to 1800. Two particles at a distance $r$ interact by an attractive potential $-1/r$ and a repulsive potential $1/r^2$. The repulsion simulates the pressure in a polytropic gas of polytropic index $3/2$. We take the total angular momentum $L$ to be conserved, but not the total energy $E$. The particles are stationary in the rotating coordinate system. The rotational energy is $L^2/(2I)$ where $I$ is the moment of inertia. Configurations where the energy $E$ has a local minimum are stable. In the continuum limit $N\\to\\infty$ the particles become more and more tightly packed in a finite volume, with the interparticle distances decreasing as $N^{-1/3}$. We argue that $N^{-1/3}$ is a good parameter for describing the continuum limit. We argue further that the continuum limit is the polytropic gas of index $3/2$. For example, the density profile of the nonrotating gas approaches that computed from the Lane--Emden equation describing the nonrotating polytropic gas. In the case of maximum rotation the instability occurs by the loss of particles from the equator, which becomes a sharp edge, as predicted by Jeans in his study of rotating polytropes. We describe the minimum energy nonrotating configurations for a number of small values of $N$.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidly rotating gravitationally bound systems of point particles, compared to polytropes\",\"authors\":\"Yngve Hopstad, J. Myrheim\",\"doi\":\"10.1142/S0129183120500904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to simulate rigidly rotating polytropes we have simulated systems of $N$ point particles, with $N$ up to 1800. Two particles at a distance $r$ interact by an attractive potential $-1/r$ and a repulsive potential $1/r^2$. The repulsion simulates the pressure in a polytropic gas of polytropic index $3/2$. We take the total angular momentum $L$ to be conserved, but not the total energy $E$. The particles are stationary in the rotating coordinate system. The rotational energy is $L^2/(2I)$ where $I$ is the moment of inertia. Configurations where the energy $E$ has a local minimum are stable. In the continuum limit $N\\\\to\\\\infty$ the particles become more and more tightly packed in a finite volume, with the interparticle distances decreasing as $N^{-1/3}$. We argue that $N^{-1/3}$ is a good parameter for describing the continuum limit. We argue further that the continuum limit is the polytropic gas of index $3/2$. For example, the density profile of the nonrotating gas approaches that computed from the Lane--Emden equation describing the nonrotating polytropic gas. In the case of maximum rotation the instability occurs by the loss of particles from the equator, which becomes a sharp edge, as predicted by Jeans in his study of rotating polytropes. We describe the minimum energy nonrotating configurations for a number of small values of $N$.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129183120500904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129183120500904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rigidly rotating gravitationally bound systems of point particles, compared to polytropes
In order to simulate rigidly rotating polytropes we have simulated systems of $N$ point particles, with $N$ up to 1800. Two particles at a distance $r$ interact by an attractive potential $-1/r$ and a repulsive potential $1/r^2$. The repulsion simulates the pressure in a polytropic gas of polytropic index $3/2$. We take the total angular momentum $L$ to be conserved, but not the total energy $E$. The particles are stationary in the rotating coordinate system. The rotational energy is $L^2/(2I)$ where $I$ is the moment of inertia. Configurations where the energy $E$ has a local minimum are stable. In the continuum limit $N\to\infty$ the particles become more and more tightly packed in a finite volume, with the interparticle distances decreasing as $N^{-1/3}$. We argue that $N^{-1/3}$ is a good parameter for describing the continuum limit. We argue further that the continuum limit is the polytropic gas of index $3/2$. For example, the density profile of the nonrotating gas approaches that computed from the Lane--Emden equation describing the nonrotating polytropic gas. In the case of maximum rotation the instability occurs by the loss of particles from the equator, which becomes a sharp edge, as predicted by Jeans in his study of rotating polytropes. We describe the minimum energy nonrotating configurations for a number of small values of $N$.