与多相体相比,点粒子的刚性旋转引力束缚系统

Yngve Hopstad, J. Myrheim
{"title":"与多相体相比,点粒子的刚性旋转引力束缚系统","authors":"Yngve Hopstad, J. Myrheim","doi":"10.1142/S0129183120500904","DOIUrl":null,"url":null,"abstract":"In order to simulate rigidly rotating polytropes we have simulated systems of $N$ point particles, with $N$ up to 1800. Two particles at a distance $r$ interact by an attractive potential $-1/r$ and a repulsive potential $1/r^2$. The repulsion simulates the pressure in a polytropic gas of polytropic index $3/2$. We take the total angular momentum $L$ to be conserved, but not the total energy $E$. The particles are stationary in the rotating coordinate system. The rotational energy is $L^2/(2I)$ where $I$ is the moment of inertia. Configurations where the energy $E$ has a local minimum are stable. In the continuum limit $N\\to\\infty$ the particles become more and more tightly packed in a finite volume, with the interparticle distances decreasing as $N^{-1/3}$. We argue that $N^{-1/3}$ is a good parameter for describing the continuum limit. We argue further that the continuum limit is the polytropic gas of index $3/2$. For example, the density profile of the nonrotating gas approaches that computed from the Lane--Emden equation describing the nonrotating polytropic gas. In the case of maximum rotation the instability occurs by the loss of particles from the equator, which becomes a sharp edge, as predicted by Jeans in his study of rotating polytropes. We describe the minimum energy nonrotating configurations for a number of small values of $N$.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidly rotating gravitationally bound systems of point particles, compared to polytropes\",\"authors\":\"Yngve Hopstad, J. Myrheim\",\"doi\":\"10.1142/S0129183120500904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to simulate rigidly rotating polytropes we have simulated systems of $N$ point particles, with $N$ up to 1800. Two particles at a distance $r$ interact by an attractive potential $-1/r$ and a repulsive potential $1/r^2$. The repulsion simulates the pressure in a polytropic gas of polytropic index $3/2$. We take the total angular momentum $L$ to be conserved, but not the total energy $E$. The particles are stationary in the rotating coordinate system. The rotational energy is $L^2/(2I)$ where $I$ is the moment of inertia. Configurations where the energy $E$ has a local minimum are stable. In the continuum limit $N\\\\to\\\\infty$ the particles become more and more tightly packed in a finite volume, with the interparticle distances decreasing as $N^{-1/3}$. We argue that $N^{-1/3}$ is a good parameter for describing the continuum limit. We argue further that the continuum limit is the polytropic gas of index $3/2$. For example, the density profile of the nonrotating gas approaches that computed from the Lane--Emden equation describing the nonrotating polytropic gas. In the case of maximum rotation the instability occurs by the loss of particles from the equator, which becomes a sharp edge, as predicted by Jeans in his study of rotating polytropes. We describe the minimum energy nonrotating configurations for a number of small values of $N$.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129183120500904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129183120500904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了模拟刚性旋转多晶体,我们模拟了$N$点粒子的系统,其中$N$高达1800。距离一定的两个粒子$r$通过吸引势$-1/r$和排斥势$1/r^2$相互作用。排斥力模拟了具有多向指数的多向气体中的压力$3/2$。我们让总角动量$L$守恒,而不是总能量$E$。粒子在旋转的坐标系中是静止的。转动能是$L^2/(2I)$其中$I$是转动惯量。能量$E$有局部最小值的构型是稳定的。在连续介质极限$N\to\infty$下,颗粒在有限体积内的排列越来越紧密,颗粒间距离减小为$N^{-1/3}$。我们认为$N^{-1/3}$是描述连续体极限的一个很好的参数。进一步论证了连续统极限是指数$3/2$的多向性气体。例如,非旋转气体的密度分布接近由描述非旋转多向性气体的Lane—Emden方程计算得到。在最大旋转的情况下,不稳定性是由于赤道粒子的损失而发生的,它变成了一个锋利的边缘,正如Jeans在他对旋转多面体的研究中所预测的那样。我们描述了一些小值$N$的最小能量非旋转构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidly rotating gravitationally bound systems of point particles, compared to polytropes
In order to simulate rigidly rotating polytropes we have simulated systems of $N$ point particles, with $N$ up to 1800. Two particles at a distance $r$ interact by an attractive potential $-1/r$ and a repulsive potential $1/r^2$. The repulsion simulates the pressure in a polytropic gas of polytropic index $3/2$. We take the total angular momentum $L$ to be conserved, but not the total energy $E$. The particles are stationary in the rotating coordinate system. The rotational energy is $L^2/(2I)$ where $I$ is the moment of inertia. Configurations where the energy $E$ has a local minimum are stable. In the continuum limit $N\to\infty$ the particles become more and more tightly packed in a finite volume, with the interparticle distances decreasing as $N^{-1/3}$. We argue that $N^{-1/3}$ is a good parameter for describing the continuum limit. We argue further that the continuum limit is the polytropic gas of index $3/2$. For example, the density profile of the nonrotating gas approaches that computed from the Lane--Emden equation describing the nonrotating polytropic gas. In the case of maximum rotation the instability occurs by the loss of particles from the equator, which becomes a sharp edge, as predicted by Jeans in his study of rotating polytropes. We describe the minimum energy nonrotating configurations for a number of small values of $N$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信