带字符串和膜的MCMC:郊区算法

J. Heckman, J. Bernstein, B. Vigoda
{"title":"带字符串和膜的MCMC:郊区算法","authors":"J. Heckman, J. Bernstein, B. Vigoda","doi":"10.1142/S0217751X17501330","DOIUrl":null,"url":null,"abstract":"Motivated by the physics of strings and branes, we introduce a general suite of Markov chain Monte Carlo (MCMC) \"suburban samplers\" (i.e., spread out Metropolis). The suburban algorithm involves an ensemble of statistical agents connected together by a random network. Performance of the collective in reaching a fast and accurate inference depends primarily on the average number of nearest neighbor connections. Increasing the average number of neighbors above zero initially leads to an increase in performance, though there is a critical connectivity with effective dimension d_eff ~ 1, above which \"groupthink\" takes over, and the performance of the sampler declines.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MCMC with Strings and Branes: The Suburban Algorithm\",\"authors\":\"J. Heckman, J. Bernstein, B. Vigoda\",\"doi\":\"10.1142/S0217751X17501330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the physics of strings and branes, we introduce a general suite of Markov chain Monte Carlo (MCMC) \\\"suburban samplers\\\" (i.e., spread out Metropolis). The suburban algorithm involves an ensemble of statistical agents connected together by a random network. Performance of the collective in reaching a fast and accurate inference depends primarily on the average number of nearest neighbor connections. Increasing the average number of neighbors above zero initially leads to an increase in performance, though there is a critical connectivity with effective dimension d_eff ~ 1, above which \\\"groupthink\\\" takes over, and the performance of the sampler declines.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217751X17501330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217751X17501330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于弦和膜的物理性质,我们引入了一套通用的马尔可夫链蒙特卡罗算法。“郊区采样者”(即分散在大都市)。郊区算法涉及一个由随机网络连接在一起的统计代理的集合。集体在达到快速和准确推断方面的性能主要取决于最近邻连接的平均数量。将邻居的平均数量增加到零以上,最初会导致性能的提高,尽管有效维数d_eff ~ 1存在一个关键的连通性,超过这个连通性,“群体思维”就会起作用,采样器的性能就会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MCMC with Strings and Branes: The Suburban Algorithm
Motivated by the physics of strings and branes, we introduce a general suite of Markov chain Monte Carlo (MCMC) "suburban samplers" (i.e., spread out Metropolis). The suburban algorithm involves an ensemble of statistical agents connected together by a random network. Performance of the collective in reaching a fast and accurate inference depends primarily on the average number of nearest neighbor connections. Increasing the average number of neighbors above zero initially leads to an increase in performance, though there is a critical connectivity with effective dimension d_eff ~ 1, above which "groupthink" takes over, and the performance of the sampler declines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信