球上紧李群的多辛作用

Pub Date : 2019-06-20 DOI:10.4310/JSG.2020.V18.N6.A6
Antonio Michele Miti, L. Ryvkin
{"title":"球上紧李群的多辛作用","authors":"Antonio Michele Miti, L. Ryvkin","doi":"10.4310/JSG.2020.V18.N6.A6","DOIUrl":null,"url":null,"abstract":"We investigate the existence of homotopy comoment maps (comoments) for high-dimensional spheres seen as multisymplectic manifolds. Especially, we solve the existence problem for compact effective group actions on spheres and provide explicit constructions for such comoments in interesting particular cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisymplectic actions of compact Lie groups on spheres\",\"authors\":\"Antonio Michele Miti, L. Ryvkin\",\"doi\":\"10.4310/JSG.2020.V18.N6.A6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the existence of homotopy comoment maps (comoments) for high-dimensional spheres seen as multisymplectic manifolds. Especially, we solve the existence problem for compact effective group actions on spheres and provide explicit constructions for such comoments in interesting particular cases.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N6.A6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N6.A6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了作为多辛流形的高维球的同伦注释映射的存在性。特别地,我们解决了球面上紧有效群作用的存在性问题,并在一些有趣的特殊情况下给出了这类评论的显式构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multisymplectic actions of compact Lie groups on spheres
We investigate the existence of homotopy comoment maps (comoments) for high-dimensional spheres seen as multisymplectic manifolds. Especially, we solve the existence problem for compact effective group actions on spheres and provide explicit constructions for such comoments in interesting particular cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信